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Figure 1. Spatial geometry of the problem

Here▽2
h is the horizontal Laplacian operator, ρ0 unperturbed quiet

sun density, c2 adiabatic sound speed,N2 Brunt-Vaasala buoyancy
frequency, and ωac = c2

4H2
ρ

(1 − 2n. ▽ Hρ) is Lamb’s acoustic
cut-off frequency, defined in terms of density scale height Hρ and
unit vector n in the direction of the gravity action. As is standard in
acoustic mode helioseismology let us take N2 = 0 to simplify the
equation to a non-linear second-order wave-equation:
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To find asymptotic solutions the method of geometrical optics
(Kravtsov & Orlov 1990) is used in this paper. The method, devel-
oped for linear wave-equation and generalised as method of Geo-
metric Asymptotics by Guillemin & Sternberg (1990) for a wider
range of high order differential operators. In short, this works by
looking for the solution of the equation (2.1) in terms of Debye ray
series written for asymptotically large parameter Λ:
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On substitution of the series into (2.1) and arranging the result in
terms powers of the large asymptotic parameter Λ a series of equa-
tions is obtained:
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Here (2.2) is a first order differential equation in partial deriva-
tives called an eikonal equation which under suitable initial condi-
tions can be solved to fully reconstruct phase function ϕ(r, t). The
following (2.3-2.4) are called transport equations and can be solved
iteratively using the solution for eikonal to obtain amplitude coeffi-
cientsA0, A1, . . .. For more details and examples of the application
of the method in the solar case see Gough (1993).

Let M be a space-time manifold, described by Cartesian co-
ordinates (x, y, z) and time, t. Let z be the depth, and x and y
correspond to horizontal directions. Then, as ϕ = ϕ(x, y, z, t), the

following variables describe ϕ in the phase space, ΩM

kx =
∂ϕ
∂x

, ky =
∂ϕ
∂y

, kz =
∂ϕ
∂z

, ω = −∂ϕ
∂t

. (2.5)

The eikonal (2.2) belongs to the class of Hamilton-Jacobi equations
and can be solved by method of characteristics in the phase space.
In the above notation it corresponds to the Hamiltonian
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1
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ac
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«

, (2.6)

so that the equation (2.2) becomes H = 0 and finding the solution
is reduced to integration of the characteristic system.

It can be shown (see Section 3.2 for example) that when the
Hamiltonian (2.6) does not explicitly depend on horizontal vari-
ables, under suitably symmetric initial conditions, M can be re-
duced by one dimension, so that the solution can primarily be
sought in two spatial dimensions, i.e. ϕ = ϕ(x, z, t), so that
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1
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, (2.7)

kh =
∂ϕ
∂x

, kz =
∂ϕ
∂z

, ω = −∂ϕ
∂t

.

The full solution is then obtained via rotation using k2
h = k2

x + k2
y

relationship.
In the problems considered in this paper, the sound speed

and acoustic cut-off frequency depend only on depth, so the time-
dependent equation (2.1) is often reduced to two spatial dimensions
plus time. In such case we introduce cartesian coordinates x and
z on manifold M, corresponding to horizontal and vertical direc-
tions, with depth z chosen to be 0 at the surface and positive below
it (see Figure 1). Note that in six dimensional space ΩM the graph
of ϕ (i.e. the map (x, z, t) #→

`

x, z, t, ∂ϕ
∂x

, ∂ϕ
∂z

, ∂ϕ
∂t

´

) is a three-
dimensional surface. The characteristic system is then defined as
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,
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where τ is an independent variable. Note that condition H = 0
can be used instead of one of the equations in the above sys-
tem. Solutions of the system (2.8) written in terms of τ (i.e.
x(τ ), z(τ ), t(τ ), kh(τ ), kz(τ ),ω(τ )) provide us with characteris-
tic lines lying on the graph of ϕ in ΩM . The phase function is
determined by integrating

dϕ
dτ

= kh
dx
dτ

+ kz
dz
dτ

− ω
dt
dτ

(2.9)

along each such line. In order to reconstruct the phase func-
tion ϕ in the whole (x, z, t) domain, initial conditions on some
two-dimensional surface S ∈ ΩM have to be provided so that
characteristic lines originating from every point of such surface
sweep out the three-dimensional graph. Let (ζ, η) be the coordi-
nates on S so that the initial field can be written as Ψ0(ζ, η) =

eiΛϕ(ζ,η) P A0
m(ζ,η)
(iΛ)m . Characteristic solutions of (2.8) with ini-

tial conditions taken as described sweep out a three-dimensional
surface in ΩM described by (ζ, η, τ ) which are called ray-
coordinates. Thus, it is important to take into account the proper ini-
tial conditions in order to understand the geometrical aspects of the
wave-field associated with the equation (2.2). Projections of indi-
vidual characteristics (x(τ ), z(τ ), t(τ ), kh(τ ), kz(τ ),ω(τ )) from
ΩM onto (x, z, t) space are called rays.

Once the eikonal equation solved, its solution can then be used
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Using symmetry, this solution is then rotated by varying φ, kφ to
obtain the full three-dimensional field:

(θ, t0, τ ) !→ (x̂, z, t, kh, kz, ω) ↪→ (x, y, z, t, kx, ky , kz, ω),

via
kx = kh sin φ, ky = kh cos φ, x = xs+x̂ sin φ, y = ys +x̂ cos φ.

Point source is approximated by letting r in the definition (3.5)
to be infinitely small. A source is spatially homogenous when the
initial phase function, ϕ0 in (3.1), may depend only on time.

When the dimensionality is reduced, surface S, where initial
conditions for the pressure perturbation are set, becomes a circle of
radius, r, located at depth z = zs. The surface is parametrised by
coordinates (θ, t0) with

8

>

<

>

:

x = xs + r cos θ

z = zs + r sin θ

t = t0

(3.9)

The initial field on this surface is described as
Ψ0 = A0(θ, t0)e

iϕ0(θ,t0). (3.10)
The unknown initial wavenumbers and frequency, kh0 =
∂ϕ0

∂x
, kz0 = ∂ϕ0

∂z
and ω0 = − ∂ϕ0

∂t
, are found from the system:
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− ω0
∂t
∂θ

,
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ω2

0 − ω2
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c2
.

(3.11)

Let us now consider spherical monochromatic homogeneous
source of some fixed frequency, ωf , i.e. ϕ0(θ, t0) = −ωf t0. Then
from the above ω0 = ωf and kh0 sin θ = kz0 cos θ. This implies
that in this configuration (see Figure 1) θ can be viewed as ray take-
off angle and all rays generated from S are of the same frequency,
so frequency subscripts can be dropped. Define k2

s(zs, ω) =
ω2

−ω2
ac

c2

?

?

?

z=zs

, then horizontal and vertical wavenumbers can be
rewritten as kh0 = ks cos θ, and kz0 = ks sin θ. Since Hamilto-
nian is independent of horizontal coordinate and time, ω and kh are
constant on each ray. Then so is the horizontal phasespeed of a ray,
v2

ph = ω2

k2
h

= c2

cos2 θ
1

1−
ω2

ac
ω2

.

When t0 is fixed, θ serves as a ray-numbering parameter. Note
that by setting A(θ, t0) = 0, when θ < 0 one can investigate the
wavefield generated by rays going down from the source, which
would correspond to semi-spheric pump creating pressure at the
source. Similarly, taking A(θ, t0) = 0 for θ > 0 corresponds to
the wavefield generated by rays going up to the surface.

4 POLYTROPE

4.1 Individual ray solution

Let us now consider the reduced system in 2 + 1 dimensions with
Hamiltonian (2.7) independent of horizontal coordinate and time.
The characteristic equations (2.8) are then considerably simplified:
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dx
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ω
c2

;
kh

dτ
= 0;

dω
dτ

= 0;

k2
h + k2

z − ω2 − ω2
ac

c2
= 0. (4.1)

When kh = 0, the corresponding ray propagates purely vertically
(x = const). It is easy to see that in terms of the reduction de-
scribed for spherical source in Section 3.2 this ray travels along the
rotation axis.

Consider polytrope model with adiabatic sound-speed and
acoustic-cutoff frequency depending on depth only:

c2(z) =
gz
m

, ω2
ac(z) =

g(m + 2)
4z

, (4.2)

where g is the gravitational constant (the value of g = 2.67 ×
10−4 Mm/s2 is used in our calculations), and m is the polytrope
index. Let us discuss some general properties of such model and
eikonal solving associated rays.

A single ray with horizontal wavenumber kh and frequency
ω in this model, in general, will have two turning points, zu and
zl (upper and lower), determined by the condition kz = 0. In the
exceptional case of ray propagating purely vertically, kh = 0, the
lower turning point can be viewed as located at infinite depth. Oth-
erwise, using (4.2) one obtains:

z2k2
z

k2
h

= −z2 +
ω2m
k2

hg
z − m(m + 2)

4k2
h

= (z − zu)(zl − z) = b2 − (z − a)2, (4.3)

where zu, zl are the upper and lower turning points and a(kh, ω) =
zu+zl

2 , b(kh, ω) = zl−zu

2 . These can also be written as a(kh, ω) =
1
2

ω2m
k2

h
g
and b(kh, ω) =

q

a2(kh, ω) − m(m+2)
4k2

h

. Note that the up-
per and lower turning points coincide when b = 0.

Furthermore, in this model the wave-vector length, k2 =
ω2

−ω2
ac

c2
, viewed as function of z only, has a maximum at zE =

g(m+2)
2ω2 determined by ω2

ac(zE) = ω2

2 . This value is important due
to the following more general statement:

Proposition 1. With HamiltonianH in (2.7) independent of x and
t, every ray solving (2.8) that has two distinct turning point depths,
zu and zl, will pass through at least one point with z = zE, where
zE is such that ∂

∂z

“

ω2
−ω2

ac

c2

”?

?

?

z=zE

= 0.

Indeed, according to (2.8), dkz
dτ

= − ∂H
∂z

= ∂
∂z

“

ω2
−ω2

ac
c2

”

. But
this is the rate of change of vertical wavenumber along the ray, and
since kz(τ ) is smooth and becomes zero at turning points, it will
have an extremum between them.

Corollary 1. If for a given frequency there exists a unique ”par-
tition depth” z = zE such that ∂H

∂z

?

?

z=zE
= 0, then for all rays

with distinct upper and lower turning points the following inequal-
ities are true: zu < zE, zl > zE. Ray starting at depth zE with
k2

h =
ω2−ω2

ac

c2

?

?

?

z=zE

will propagate horizontally.

In the polytrope model, b becomes zero only when ray is ini-
tialised at depth zE(ω) with kh = 1

2
ω2m
gzE

. It follows that under
these conditions a = zE.

Since ω
c2

̸= 0 in the domain of interest, z > 0, one can rewrite
system (4.1) using group travel time, tg , as the parameter along the
ray, with t = tg + t0, to obtain
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dx
dtg

=
gz
ωm

kh,
dz
dtg

=
gz
ωm

kz

dω
dtg

= 0,
dkh

dtg
= 0,

z2k2
z

k2
h

= b2 − (z − a)2 (4.4)
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• electron, proton or mixed (Zharkova & Zharkov, 2007, ApJ)

Seismic Transients from Flares in Solar Cycle 23

to check whether the shift in dominance of one hemisphere over the other one has any
significance to the production of sunquakes.

4 Reading Helioseismic Maps of Solar Flares

Helioseismic analysis of sunquakes has relied on full-disk Doppler maps at a cadence of
about 60 s and a resolution of ∼3 Mm. These have been provided by the space-borne
SOHO/MDI and the ground-based Global Oscillations Network Group (GONG) during
SC23 in the photospheric line Ni I 6768 Å. The same are now being provided by SDO/HMI
in the photospheric line Fe I 6173 Å, at a cadence of 45 s and resolution of ∼1.0 Mm.

Let us sumarize the case of the well studied X1.2 solar flare of AR10720 on 2005 January
15 (see Fig. 3 and Moradi et al. 2007; Martínez-Oliveros et al. 2007; Kosovichev 2006a). The
SOHO/MDI Doppler maps show the velocity impulse (amplitude 100 m/s) of the flare in the
sunspot photosphere which was almost as sharp as the HXR flux detected in the 4–25 keV
energy range by the RHESSI satellite. The upper left map in Fig. 3 shows the Doppler
difference between two consecutive solar images at 0:41:30 UT on January 15, 2005; the
bright elongated feature indicated by the arrow in the upper left frame signifies a strong red
shift, suggesting a downflowing photospheric plasma. Another interesting example is the
X17 flare of 2003 October 28, which showed multiple seismic sources. Transient red shifts
at the locations of the strongest three cases showed downward velocities of 2.15 km/s,
2.0 km/s and 1.75 km/s (Donea and Lindsey 2005; Zharkova and Zharkov 2007). The
durations of the downward motions did not exceed 2.0 minutes followed by a relaxation of
the photosphere back to the preflare status. Simple calculations show that the momentum
required to produce the observed seismic response is about 1021−22 g/cm/s for an average
shaken area located under the flare of 3–5 Mm across (Kosovichev and Zharkova 1998).

Fig. 3 X1 flare of 2005 January 15. Upper left panel shows an MDI Doppler image at flare onset with arrow,
reproduced in all other frames, pointing to the sudden, compact red-shift signature at the acoustic source.
Upper right panel shows the MDI Doppler map 40 minutes after the onset of the flare. The top arrow in this
frame points to surface Doppler ripples proceeding outward from the impact site, located by the lower arrow.
Lower left panel shows the signature of sudden visible continuum emission observed by GONG. Lower right
panel shows the signature of the extended seismic source acting in the 5–7 mHz spectrum, reconstructed at
the time of flare onset from the surface ripples that subsequently spread outward through a 15–45 Mm pupil
centered on the pixel for each pixel in the image

• Backwarming heating 
          (e.g.Donea et al, 2006)

• cospatial with WL & HXR
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• Backwarming heating 
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• cospatial with WL & HXR

• Wave interaction? quasi-periodic pulsations? (Fletcher 
& Hudson 2008)
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Figure 4. Subjacent vantage imaging is the result of a holographic regression in which the focal plane
is shallow compared to the inner radius of the pupil. This configuration images seismic radiation that
is initially emitted downward from the source and penetrates thousands of km into the solar interior
before being refracted back to the surface. While the acoustic disturbance is necessarily observed at
the surface, these images render the perspective of an acoustic observer looking upward into the base
of the source from thousands of km beneath it. In subjacent vantage holography, the disposition of
the computational pupil is substantially an inversion of that in familiar lens optics. As the angle, θ ,
of illumination at the focal point increases, the angular distance, ρ, along the pupil from its center,
above the focal point, decreases.

inverted with respect to that of familiar lens optics. In familiar lens optics, the
greatest angle of illumination, θ , corresponds to the periphery of the aperture. In
this case, and in superjacent-vantage holography of deeply submerged sources, the
resolution limit imposed by diffraction is optimized by using a larger pupil. In
subjacent vantage holography, it is the inner radius of the pupil that is connected to
the optical path of the greatest illuminating angle. The diffraction limit is, therefore,
set not by how wide the outer radius of the pupil is but rather how compact the
inner radius is. This principle may come across more intuitively to some readers
in more strictly wave-mechanical language. For this purpose we point out that the
finest diffraction limit for the computation is accomplished by securing the waves
with the highest spherical harmonic degree, ℓ. In the subjacent vantage, these are
the waves with the shortest skip distances from the source. These are therefore the
waves that arrive more towards the inside of the pupil, not the outside as the high-ℓ
waves do in familiar lens optics.
The simulations shown in Figure 3 were made with a annular pupil with inner

radius, a = 15 Mm and outer radius b = 45 Mm. The signatures shown in the first
two frames, a and b, are entirely from a subjacent perspective and the third from
a mixed perspective that is predominantly subjacent. The deeper alphanumeric
absorber is seen from perspectives that are predominantly superjacent.

sunquake detection
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sunquake detection

Subsequent holographic imaging of several flares consider-
ably larger than the 1996 July 9 flare showed no acoustic sig-
nature. This made it evident that some flares are far more efficient
emitters of seismic energy into the solar interior than others. The
reason some flares are acoustically active while most are acous-
tically inactive has been a mystery. Seven years after the flare of
1996 July two acoustically active flares emanated from a single
active region, NOAA AR 10486, inside of a 34 hr period. This
represents a major development for several reasons. The statisti-
cal weight of instances in which flares have transmitted signifi-
cant seismic emission into the solar interior, previously somewhat
thin, is now overwhelming. The flares of 2003 October 28 and
29 were exceptionally well observed by other space-based and
ground-based facilities, greatly expanding and amplifying diag-
nostic possibilities.

In this paper, we describe the seismic emission signatures
from the flares of 2003 October 28 and 29, and compare them
with other supporting observations. Both flares were observed
by the MDI, the Reuven Ramaty High-Energy Solar Spectro-
scopic Imager (RHESSI ), the Transition Region and Coronal
Explorer (TRACE ), the Geostationary Operational Environ-
mental Satellites (GOES ), and the Global Oscillations Network
Group (GONG). The flare of October 29 was also observed by
the Imaging Vector Magnetograph (IVM) at the Mees Solar Ob-
servatory in Haleakala, Hawaii. In this study we will compare
phase-coherent seismic images of the seismic emission com-
puted from the MDI helioseismic observations with observations
from all of these facilities.

2. PROCEDURE

2.1. Helioseismic Holography

Wehere briefly review the technique of computational seismic
holography, which we use to image acoustic sources such as
flares. Helioseismic holography is the phase-coherent reconstruc-
tion of acoustic waves observed at the solar surface into the solar
interior to render stigmatic images of subsurface sources that have
given rise to the surface disturbance. Because the solar interior
refracts downgoing waves back to the surface, helioseismic ho-
lography can use observations in one surface region, the pupil, to
image another surface region, the focus, a considerable distance
from the pupil. We call this ‘‘seismic holography from the sub-
jacent vantage’’ (see Fig. 4 of Lindsey & Braun 2000).

When the acoustic reconstruction is backward in time, we call
the extrapolated field the ‘‘acoustic egression.’’ This is intended
to represent waves emanating from the focus. When the acoustic
field at any point r 0 is expressed as a complex amplitude  ̂ for any
given frequency !, the acoustic egression can be expressed as

Ĥþ(r; !)¼
Z

pupil

d2r0Ĝþ(r; r
0; !)  ̂ (r0; !): ð1Þ

In this formalism, Ĝþ(r; r0; !) is a Green’s function that ex-
presses the disturbance at the focus r due to a measured point
source at r 0 if the acoustic field propagated backward in time
from the source to the focus.

The relation between the real acoustic field  (r, t), represent-
ing acoustic disturbances as a function of time, and its complex
counterpart  ̂(r; !) as a function of frequency, is expressed by
the Fourier transform

 (r; t) ¼ 1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!t ̂(r; !): ð2Þ

The same applies to the egression:

Hþ(r; t) ¼
1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!tĤþ(r; !): ð3Þ

The square amplitude of the egression,

P(r; t) ¼ jHþ(r; t)j2; ð4Þ

is called the ‘‘egression power.’’ Egression power maps over a
range of times and surface regions show compact signatures in
the spatial and temporal neighborhoods of localized, episodic
seismic emission. The signature of a localized absorber in an
ambient acoustic field is a similarly sharp deficit in egression
power, appearing as a silhouette when rendered graphically.

If the integral in equation (3) is computed over negative as
well as positive frequencies, as stated,H+(r, t) is real but tends to
appear noisy, since the real value at any point tends to pass from
its nominal positive or negative value through zero frequently as
time, t, progresses. The egression power is considerably less noisy
when the integral is limited to positive frequencies, in which case
H+ remains complex and tends to maintain its modulus, winding
counterclockwise around the origin in the complex plane rather
than passing through it unnecessarily.

In practice, there are considerable further advantages to lim-
iting the integral over frequency to a particular spectral band. All
of the egression power maps shown graphically in this paper
were computed over the 5–7 mHz spectrum. This avoids the
2.5–5 mHz spectrum, in which ambient noise generated by con-
vection competes unfavorably with acoustic emission from the
flare. It also avails uswithwaves that have a finer diffraction limit
due to a relatively shorter wavelength. (Convective noise at fre-
quencies below 2.5 mHz is considerably smaller than that in the
2.5–5mHz band, probably because low-frequency acousticwaves
have difficulty penetrating the solar interior. The same acoustic
impediment would have to apply similarly to seismic emission
from flares.)

The discrimination we accomplish by limiting the computa-
tion to the 5–7 mHz band comes at some expense in temporal
discrimination. The egression power signatures that result are
temporally smeared to a minimum effective duration of order

!t ¼ 1

!"
¼ 1

2 mHz
¼ 500 s: ð5Þ

This means that the acoustic signatures of the flare will gener-
ally begin several minutes before the actual onset of the flare
and last for several minutes, whereas the actual acoustic dis-
turbance could be instantaneous.

It is important to discriminate between the egression power,
jHþ(r; t)j2, and the square modulus, j (r; t)j2, of the local wave
amplitude  at the focus r. Each pixel in a local acoustic power
map represents local surface motion as viewed directly from
above the photosphere. Each pixel in the egression-power image
is a coherent representation of acoustic waves that have emanated
downward from the focus; traveled thousands of kilometers from
the focus, deep beneath the solar surface; and re-emerged into a
pupil a significant distance from the focus. The subjacent vantage
thus shows the photosphere as viewed by an acoustic observer
directly beneath it. Basic principles of seismic holography in the
subjacent vantage are reviewed in somewhat more detail in x 4 of
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Figure 4. Subjacent vantage imaging is the result of a holographic regression in which the focal plane
is shallow compared to the inner radius of the pupil. This configuration images seismic radiation that
is initially emitted downward from the source and penetrates thousands of km into the solar interior
before being refracted back to the surface. While the acoustic disturbance is necessarily observed at
the surface, these images render the perspective of an acoustic observer looking upward into the base
of the source from thousands of km beneath it. In subjacent vantage holography, the disposition of
the computational pupil is substantially an inversion of that in familiar lens optics. As the angle, θ ,
of illumination at the focal point increases, the angular distance, ρ, along the pupil from its center,
above the focal point, decreases.
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this case, and in superjacent-vantage holography of deeply submerged sources, the
resolution limit imposed by diffraction is optimized by using a larger pupil. In
subjacent vantage holography, it is the inner radius of the pupil that is connected to
the optical path of the greatest illuminating angle. The diffraction limit is, therefore,
set not by how wide the outer radius of the pupil is but rather how compact the
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in more strictly wave-mechanical language. For this purpose we point out that the
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the waves with the shortest skip distances from the source. These are therefore the
waves that arrive more towards the inside of the pupil, not the outside as the high-ℓ
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counterpart  ̂(r; !) as a function of frequency, is expressed by
the Fourier transform

 (r; t) ¼ 1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!t ̂(r; !): ð2Þ

The same applies to the egression:

Hþ(r; t) ¼
1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!tĤþ(r; !): ð3Þ

The square amplitude of the egression,

P(r; t) ¼ jHþ(r; t)j2; ð4Þ

is called the ‘‘egression power.’’ Egression power maps over a
range of times and surface regions show compact signatures in
the spatial and temporal neighborhoods of localized, episodic
seismic emission. The signature of a localized absorber in an
ambient acoustic field is a similarly sharp deficit in egression
power, appearing as a silhouette when rendered graphically.

If the integral in equation (3) is computed over negative as
well as positive frequencies, as stated,H+(r, t) is real but tends to
appear noisy, since the real value at any point tends to pass from
its nominal positive or negative value through zero frequently as
time, t, progresses. The egression power is considerably less noisy
when the integral is limited to positive frequencies, in which case
H+ remains complex and tends to maintain its modulus, winding
counterclockwise around the origin in the complex plane rather
than passing through it unnecessarily.

In practice, there are considerable further advantages to lim-
iting the integral over frequency to a particular spectral band. All
of the egression power maps shown graphically in this paper
were computed over the 5–7 mHz spectrum. This avoids the
2.5–5 mHz spectrum, in which ambient noise generated by con-
vection competes unfavorably with acoustic emission from the
flare. It also avails uswithwaves that have a finer diffraction limit
due to a relatively shorter wavelength. (Convective noise at fre-
quencies below 2.5 mHz is considerably smaller than that in the
2.5–5mHz band, probably because low-frequency acousticwaves
have difficulty penetrating the solar interior. The same acoustic
impediment would have to apply similarly to seismic emission
from flares.)

The discrimination we accomplish by limiting the computa-
tion to the 5–7 mHz band comes at some expense in temporal
discrimination. The egression power signatures that result are
temporally smeared to a minimum effective duration of order

!t ¼ 1

!"
¼ 1

2 mHz
¼ 500 s: ð5Þ

This means that the acoustic signatures of the flare will gener-
ally begin several minutes before the actual onset of the flare
and last for several minutes, whereas the actual acoustic dis-
turbance could be instantaneous.

It is important to discriminate between the egression power,
jHþ(r; t)j2, and the square modulus, j (r; t)j2, of the local wave
amplitude  at the focus r. Each pixel in a local acoustic power
map represents local surface motion as viewed directly from
above the photosphere. Each pixel in the egression-power image
is a coherent representation of acoustic waves that have emanated
downward from the focus; traveled thousands of kilometers from
the focus, deep beneath the solar surface; and re-emerged into a
pupil a significant distance from the focus. The subjacent vantage
thus shows the photosphere as viewed by an acoustic observer
directly beneath it. Basic principles of seismic holography in the
subjacent vantage are reviewed in somewhat more detail in x 4 of
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Figure 4. Subjacent vantage imaging is the result of a holographic regression in which the focal plane
is shallow compared to the inner radius of the pupil. This configuration images seismic radiation that
is initially emitted downward from the source and penetrates thousands of km into the solar interior
before being refracted back to the surface. While the acoustic disturbance is necessarily observed at
the surface, these images render the perspective of an acoustic observer looking upward into the base
of the source from thousands of km beneath it. In subjacent vantage holography, the disposition of
the computational pupil is substantially an inversion of that in familiar lens optics. As the angle, θ ,
of illumination at the focal point increases, the angular distance, ρ, along the pupil from its center,
above the focal point, decreases.

inverted with respect to that of familiar lens optics. In familiar lens optics, the
greatest angle of illumination, θ , corresponds to the periphery of the aperture. In
this case, and in superjacent-vantage holography of deeply submerged sources, the
resolution limit imposed by diffraction is optimized by using a larger pupil. In
subjacent vantage holography, it is the inner radius of the pupil that is connected to
the optical path of the greatest illuminating angle. The diffraction limit is, therefore,
set not by how wide the outer radius of the pupil is but rather how compact the
inner radius is. This principle may come across more intuitively to some readers
in more strictly wave-mechanical language. For this purpose we point out that the
finest diffraction limit for the computation is accomplished by securing the waves
with the highest spherical harmonic degree, ℓ. In the subjacent vantage, these are
the waves with the shortest skip distances from the source. These are therefore the
waves that arrive more towards the inside of the pupil, not the outside as the high-ℓ
waves do in familiar lens optics.
The simulations shown in Figure 3 were made with a annular pupil with inner

radius, a = 15 Mm and outer radius b = 45 Mm. The signatures shown in the first
two frames, a and b, are entirely from a subjacent perspective and the third from
a mixed perspective that is predominantly subjacent. The deeper alphanumeric
absorber is seen from perspectives that are predominantly superjacent.

sunquake detection

Subsequent holographic imaging of several flares consider-
ably larger than the 1996 July 9 flare showed no acoustic sig-
nature. This made it evident that some flares are far more efficient
emitters of seismic energy into the solar interior than others. The
reason some flares are acoustically active while most are acous-
tically inactive has been a mystery. Seven years after the flare of
1996 July two acoustically active flares emanated from a single
active region, NOAA AR 10486, inside of a 34 hr period. This
represents a major development for several reasons. The statisti-
cal weight of instances in which flares have transmitted signifi-
cant seismic emission into the solar interior, previously somewhat
thin, is now overwhelming. The flares of 2003 October 28 and
29 were exceptionally well observed by other space-based and
ground-based facilities, greatly expanding and amplifying diag-
nostic possibilities.

In this paper, we describe the seismic emission signatures
from the flares of 2003 October 28 and 29, and compare them
with other supporting observations. Both flares were observed
by the MDI, the Reuven Ramaty High-Energy Solar Spectro-
scopic Imager (RHESSI ), the Transition Region and Coronal
Explorer (TRACE ), the Geostationary Operational Environ-
mental Satellites (GOES ), and the Global Oscillations Network
Group (GONG). The flare of October 29 was also observed by
the Imaging Vector Magnetograph (IVM) at the Mees Solar Ob-
servatory in Haleakala, Hawaii. In this study we will compare
phase-coherent seismic images of the seismic emission com-
puted from the MDI helioseismic observations with observations
from all of these facilities.

2. PROCEDURE

2.1. Helioseismic Holography

Wehere briefly review the technique of computational seismic
holography, which we use to image acoustic sources such as
flares. Helioseismic holography is the phase-coherent reconstruc-
tion of acoustic waves observed at the solar surface into the solar
interior to render stigmatic images of subsurface sources that have
given rise to the surface disturbance. Because the solar interior
refracts downgoing waves back to the surface, helioseismic ho-
lography can use observations in one surface region, the pupil, to
image another surface region, the focus, a considerable distance
from the pupil. We call this ‘‘seismic holography from the sub-
jacent vantage’’ (see Fig. 4 of Lindsey & Braun 2000).

When the acoustic reconstruction is backward in time, we call
the extrapolated field the ‘‘acoustic egression.’’ This is intended
to represent waves emanating from the focus. When the acoustic
field at any point r 0 is expressed as a complex amplitude  ̂ for any
given frequency !, the acoustic egression can be expressed as

Ĥþ(r; !)¼
Z

pupil

d2r0Ĝþ(r; r
0; !)  ̂ (r0; !): ð1Þ

In this formalism, Ĝþ(r; r0; !) is a Green’s function that ex-
presses the disturbance at the focus r due to a measured point
source at r 0 if the acoustic field propagated backward in time
from the source to the focus.

The relation between the real acoustic field  (r, t), represent-
ing acoustic disturbances as a function of time, and its complex
counterpart  ̂(r; !) as a function of frequency, is expressed by
the Fourier transform

 (r; t) ¼ 1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!t ̂(r; !): ð2Þ

The same applies to the egression:

Hþ(r; t) ¼
1ffiffiffiffiffiffi
2!

p
Z 1

%1
d! ei!tĤþ(r; !): ð3Þ

The square amplitude of the egression,

P(r; t) ¼ jHþ(r; t)j2; ð4Þ

is called the ‘‘egression power.’’ Egression power maps over a
range of times and surface regions show compact signatures in
the spatial and temporal neighborhoods of localized, episodic
seismic emission. The signature of a localized absorber in an
ambient acoustic field is a similarly sharp deficit in egression
power, appearing as a silhouette when rendered graphically.

If the integral in equation (3) is computed over negative as
well as positive frequencies, as stated,H+(r, t) is real but tends to
appear noisy, since the real value at any point tends to pass from
its nominal positive or negative value through zero frequently as
time, t, progresses. The egression power is considerably less noisy
when the integral is limited to positive frequencies, in which case
H+ remains complex and tends to maintain its modulus, winding
counterclockwise around the origin in the complex plane rather
than passing through it unnecessarily.

In practice, there are considerable further advantages to lim-
iting the integral over frequency to a particular spectral band. All
of the egression power maps shown graphically in this paper
were computed over the 5–7 mHz spectrum. This avoids the
2.5–5 mHz spectrum, in which ambient noise generated by con-
vection competes unfavorably with acoustic emission from the
flare. It also avails uswithwaves that have a finer diffraction limit
due to a relatively shorter wavelength. (Convective noise at fre-
quencies below 2.5 mHz is considerably smaller than that in the
2.5–5mHz band, probably because low-frequency acousticwaves
have difficulty penetrating the solar interior. The same acoustic
impediment would have to apply similarly to seismic emission
from flares.)

The discrimination we accomplish by limiting the computa-
tion to the 5–7 mHz band comes at some expense in temporal
discrimination. The egression power signatures that result are
temporally smeared to a minimum effective duration of order

!t ¼ 1

!"
¼ 1

2 mHz
¼ 500 s: ð5Þ

This means that the acoustic signatures of the flare will gener-
ally begin several minutes before the actual onset of the flare
and last for several minutes, whereas the actual acoustic dis-
turbance could be instantaneous.

It is important to discriminate between the egression power,
jHþ(r; t)j2, and the square modulus, j (r; t)j2, of the local wave
amplitude  at the focus r. Each pixel in a local acoustic power
map represents local surface motion as viewed directly from
above the photosphere. Each pixel in the egression-power image
is a coherent representation of acoustic waves that have emanated
downward from the focus; traveled thousands of kilometers from
the focus, deep beneath the solar surface; and re-emerged into a
pupil a significant distance from the focus. The subjacent vantage
thus shows the photosphere as viewed by an acoustic observer
directly beneath it. Basic principles of seismic holography in the
subjacent vantage are reviewed in somewhat more detail in x 4 of
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Feb15 flare: HXR emission
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Alvarado-Gómez et al.

other relatively rapid changes in the line-of-sight magnetic signature evident in
the Figure 3, the possibility ought to be considered that the force transient is
greater than the step-function component. If we suppose that it is something like
the full 37 G range of the excursion seen between in the time interval −1.0 to
+2.5 min, for example, this would increase the estimate of ∆W proportionately,
to 3.36× 1026 erg. This value reaches ∼ 18% of the egression-power estimate for
the analyzed source, representing too considerable a fraction of it to be regarded
as negligible; it must be recalled at this point that this estimation is considering
only the line–of–sight component of the magnetic field, and the total energetic
contribution from the magnetic field restructuring can be even higher than the
value presented here.

2.1.2. Hard X-ray emission

Using RHESSI hard X-ray data we determined the spatial location of the hard X-
ray footpoints in four different time intervals, as is shown in the Figure 4, during
the impulsive phase where the transients in both, the magnetic and Doppler, were
observed. These observations revealed a complex structure in the distribution
of footpoints during this phase, suggesting multiple magnetic loop formation
and movement along the flare ribbons. This process was likely to end with the
relaxation of the magnetic field lines and the precipitation of particles in the
endpoints of one the flare ribbons. The left white arrow indicates the center of
the analyzed region (mask in the Figure 2).

Figure 4. HMI dopplergram differences at the beginning of the impulsive phase (left) and at
the sunquake wavefront detection time (right), combined with RHESSI CLEAN contour plots,
with levels 50%, 60%, 70%, 80% and 90% of the maximum detected intensity, in the 40− 100
and 12 − 40 keV bands, integrated during the intervals shown. The white arrows indicate the
location of the endpoints of one of the flare ribbons. The left arrow points to the center of the
analyzed region.

SOLA: SP_Alvarado_et_al_2011.tex; 20 March 2012; 0:39; p. 10

Alvarado-Gomez et al, 2012
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February quake: Variations at TD sources6 Kerr & Fletcher

Fig. 4.— White light flare footpoints overlaid on a red continuum image.

measure the WLF instantaneous power in each passband,
P

�

. I

f,�

is defined as the flare excess intensity emitted
at � over a unit solid angle, per unit area A across the
width of the passband��. Assuming isotropic radiation,
the power emitted is then

P

�

= ⇡I

f,�

A�� (1)

In each frame the WLF pixels were identified and us-
ing Equation 1 the power of each pixel was calculated
over the duration of the SOT observations. Integrating
over time returned the energy produced by that pixel
over the course of the observations. Summing the energy
from each identified pixel gave the total energy emitted in
each SOT passband over the almost 10 minutes of obser-
vations. Table 3 shows energies on the order of 1025 ergs
in each passband. The passbands are around 4 Å wide,
so scaling up to a whole WL range of ⇠2000 Å the total
energy in WL would be expected to be around three or-
ders of magnitude greater (i.e on the order 1028�29 ergs).
If background subtraction is not carried out, an energy
per SOT channel is typically 1026�27 ergs over the 10
minutes observed.
No SOT observations beyond 01:59UT were available,

but the lightcurves show a long decay phase that could
extend for much longer. Additional energy may have
been emitted as WL for an unknown period following
the available observational time window, increasing the
total energy. Milligan et al. (2012) report EUV emission
in this flare with a decay that lasts for over an hour after
the end of the SOT observations.

6. OPTICALLY THICK MODELING

We now return to the main topic of investigating the
properties of the WL sources, using Frame 11 from ER,
and Frame 9 from WR.
The first model considered was that of an optically

Energy (ergs): Red Green Blue

1� threshold 7.6⇥1025 7.3⇥1025 5.3⇥1025

2� threshold 1.8⇥1025 1.7⇥1025 1.2⇥1025

3� threshold 5.0⇥1024 3.5⇥1024 2.4⇥1024

TABLE 3
Energy emitted in the SOT red, green and blue channels between

01:50 to 01:59. Rows correspond to values obtained setting
di↵erent thresholds for identification of the flaring pixels.

thick blackbody source. A patch of local temperature
enhancement would produce an increase to the WL radi-
ation emitted by that patch from enhanced H� opacity.
We do not address the source of the required heating.

6.1. Source Temperature

The temperature of the WL sources was determined in
two ways. The color temperature was obtained using fil-
ter ratios, and the RGB intensity values were also fitted
to a blackbody curve, to determine the e↵ective temper-
ature T

e↵

. If WL emission was from a blackbody then
all of these temperatures should be consistent within er-
rors. In this analysis, the pre-flare background was not
subtracted from the flare sources, consistent with the as-
sumption of an optically thick source, the temperature
of which increases during the flare.

6.1.1. Filter Ratio Method

The Planck function

B

�

(T ) =
2hc2

�

5

1

exp
⇣

hc

�kbT

⌘
� 1

(2)

Kerr & Fletcher 2014
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10 S. Zharkov

5.3 Supersonic source

While the wave-fields generated by a monochromatic point source
have some of the properties associated with solar quakes, one of the
main limitations of the considerations above is the assumption of
source frequency. Even for observed high frequency4 waves gener-
ated by flares, the period is still of the order of couple of minutes.
At the same time, the photospheric changes observed at the quake
locations happen on a much shorter scale (Zharkova & Zharkov
2007; Kosovichev 2007, 2011; Zharkov et al. 2011a, 2012).

It is instructive to consider a non-harmonic source, i.e.
ϕ0(θ, φ, t0) = 0. This corresponds to the wave-field on initial sur-
face simply written as Ψ0 = A0(θ, φ, t0), meaning that the pres-
sure perturbation, ρ

1

2 δp, is varying slowly on the initial surface. As
in previous Section 5.2, ∂ϕ0

∂θ
= 0, kz0 = kh0 tan θ, system (3.4)

leads to the following solution:
8

>

>

>

<

>

>

>

:

k2
0 =

ω2
ac

v2 cos2 γ − c2
,

ω0 = k0.v = k0v cos γ,

kh0 = k0 cos θ, kz0 = k0 sin θ,

(5.4)

(5.5)
(5.6)

where k0 is the wavevector, v is source velocity, v = |v|, and γ is
the angle between the two vectors. From the above it follows that
non-evanescent acoustic waves (k2

0 > 0) are generated if and only
if the source moves with supersonic speed v2 > c2. Moreover, let
us rewrite (5.5) as

ω0 = ωac
cos γ

q

cos2 γ − c2

v2

, (5.7)

where the square root is always taken with plus sign due to (5.4)
and the fact that k0 > 0 by definition. Again, it is clear that while
the frequency is constant on each individual ray, it will vary from
ray to ray as parameterised by θ, φ and t0. It is also evident that in
this case ω0 is always greater then the value of ωac at the source
depth, going to infinity as cos2 γ −→ c2

v2 < 1. In addition, ω0 !

ωmin = ωacv√
v2−c2

. Note that when cos γ is negative ω0 becomes
negative, so waves waves will only be generated in the direction of
the source movement. Moreover, given the (5.3), the condition

cos2 γ >
c2

v2
(5.8)

ensures that rays are generated for only a relatively narrow range
of values of θ and φ, essentially forming a cone around the velocity
vector v. The horizontal phase speed at the source does not depend
on source depth: vph = ω0

kh0
= cos γ

cos θ
v.

Again, note that apart from the assumption of dependence on
depth only all considerations in this section are independent of the
model of the media where the waves propagate and rely only the
dispersion relation as well as spatial geometry of the problem. Also,
note that this solution is only possible when ωac > 0.

5.4 Application to the sunquakes

As quake observations and modelling suggest the source is located
near surface, let us assume that the source moves in the upper
ranges of solar interior, so that for generated frequencies zs < zE ,
i.e. the source is located near upper turning points. Then, for each

4 sunquake egression signal is usually strong around ν = 6 mHz

generated ray, the horizontal distance from the source approxi-
mately equals to the skip-distance, ∆(kh, ω). On the other hand,
the skip-distance is essentially a function of horizontal phase speed
of the ray with lower phase-speed values corresponding to smaller
distances. The relationship is exact for polytrope and other theo-
retical models (see Christensen-Dalsgaard 2003) and has been ob-
servationally validated by the time-distance helioseismology and
acoustic holography.

Let us consider a source propagating with velocity v vertically
downward, i.e. λ = π

2 (see (5.3)). Then cos γ = sin θ, and as only
downward propagating rays are generated, the first appearance of
the generated wavefront on the surface corresponds to the mini-
mum value of vph = v tan θ. Then for θ ∈

ˆ

0, π
2

˜

the minimum
horizontal phase speed will be achieved at the lowest value of θ.
Using (5.8) one obtains

min vph =
vc√

v2 − c2
, (5.9)

where expression on the right hand side is evaluated at z = zs.
However, frequency of the rays travelling near such phase speed
will be approaching infinity due to (5.7). Hence if observations
are made at certain Nyquist frequency, ωN , such waves may not
be observed, so further restrictions need be considered, namely,
ω0 " ωN has to hold. From (5.7) it follows that this condition
is equivalent to

sin2 θ !
c2

v2

ω2
N

ω2
N − ω2

ac

?

?

?

?

z=zs

.

From this the minimum ”observable” phase-speed can be evalu-
ated:

min vobs
ph =

vc
r

“

1 − ω2
ac

ω2
N

”

v2 − c2

?

?

?

?

?

?

?

?

z=zs

(5.10)

Therefore, in the acoustic wave-field excited by a vertical super-
sonic shock perturbation only waves with phase speed exceeding
these will be observable. Moreover, as surface ripples from such
source are determined by the phase speed, the minimum distance
away from the source can be estimated using the above inequal-
ity. For example, if c = 8km/s, v = 10km/s, then minimum
vph ≈ 13.3km/s. For the Sun this corresponds to a skip-distance
of around 5 − 7 Mm. Let us take the value of cut-off frequency
at source depth, ωac(zs)/2π, to be ≈ 5. mHz. Then adding the
condition that the cyclic frequency along the ray is no greater than
8.4mHz, gives us a minimum phase speed estimate at≈ 106km/s.
Therefore, in this case, only ripples at distances of order of hundred
megameters from the source would be potentially observable.

More generally, let us rewrite (5.3):

cos γ = cos(θ − λ) − cos θ cos λ(1 − cos φ).

Then, as cos θ and cos λ are non-negative, the inequality cos γ >
c
v
implies that cos(θ − λ) > c

v
> 0. Hence, θ ∈

`

λ − arccos c
v
, λ + arccos c

v

´

. It is also clear cos φ > c
v

−
sin θ sin λ. Thus for downward propagating source, i.e. λ ∈
ˆ

0, π
2

˜

, very roughly it can be estimated cos φ > c
v
−sin λ, so only

waves in the limited range of φ can be generated. But as rays propa-
gate in the plane defined by z-axis and their initial wave-vector, this
means that surface ripples will only appear in limited arcs in the di-
rection of the source movement in this way producing anisotropy
in wavefront amplitude.

Given supersonic movements observed at the sunquake source

c⃝ 2002 RAS, MNRAS 000, 1–13
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Figure 3. Time sequence of NST Hα − 0.75 Å images showing the evolution of the M1.3 (a)–(c) and C9.2 (d)–(f) flares. The dash-boxed region in panels (e) and (f) is
magnified in panels (g) and (h), respectively. Contours (30%, 40%, 50%, 60%, 70%, 80%, and 90% of each maximum flux) in panel (g) represent RHESSI 12–25 keV
PIXON images at the event onset and HXR peak.

(A color version and animations of this figure are available in the online journal.)

force-free parameter derived for the two feet of a field line on
the photosphere, and L is the loop length (Liu et al. 2013). It can
obviously be seen in Figure 2(c) that nearly all of the northern
(southern) branch loops possess a negative (positive) twist with

Tn = −0.34 (0.31). As for connectivity in a large scale, it
is apparent that the above fish-bone structure is completely
embedded under the overlying loops connecting from p1/p2
to the negative field region, S, in the northeast (Figure 2(d)).
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Figure 2. Remapped and preprocessed HMI vertical field in top (panels (a), (c), and (d)) and perspective (panel (b)) views, overplotted with NLFFF lines traced from
the parasitic negative field (with |B| > 200 G) of the flaring region (panels (a)–(c)) and a remote negative field region, S, at northeast (panel (d)). In panels (a) and
(b), the field lines landing at the northern and southern positive field regions are depicted in red and blue, respectively. The cyan lines in panel (a) are open fields. The
field lines in panel (c) are colored according to the magnetic twist index. About 18% of field lines in panel (a) do not appear in panel (b) as their two feet have α with
opposite signs. The dashed box in panel (d) represents the plotted region of panels (a) and (c) as well as the bottom boundary of panel (b).
(A color version of this figure is available in the online journal.)

on board SDO. An AIA 4500 Å (white light) image was
also utilized to register NST and Hinode images by matching
sunspot and plage areas, with an alignment accuracy of about 1′′.
Furthermore, flare HXR emission was recorded by RHESSI (Lin
et al. 2002). RHESSI PIXON images (Hurford et al. 2002) in the
energy range of 12–25 keV were reconstructed using detectors
1–8 with a 24 s integration time.

3. RESULTS

We first investigate the magnetic field structure of the flaring
region and then concentrate on describing major observational
features in Hα, 10830 Å, HXR, and EUV. More flare dynamics
can be seen in the accompanying animations associated with
Figures 3 and 4 in the online journal.

3.1. Fish-bone-like Magnetic Structure

The flaring region is characterized by two δ spots p1-n
and p2-n (Figures 1(a) and (b)), where an elongated strip,
n, of negative magnetic polarity is shared by positive fluxes
p1 and p2 which have the shape of magnetic tongues (e.g.,
Luoni et al. 2011). The penumbral filaments lying between
n and p1/p2, and also the Hinode magnetic vectors, clearly

indicate highly sheared magnetic fields along the PIL (the white
line in Figure 1(b)). It is noticeable that the PIL makes a
closed turn in the southwest but is “open” in the northeast,
as the negative field stretches to a remote region, S (also see
Figure 2(d)). The overall morphology of the magnetic field,
although much extended and elongated, is analogous to the
circular flare regions for the parasitic configuration.

In order to delineate the characteristic structure of the flare
volume, in Figures 2(a) and (b) we trace magnetic fields from
the minor negative polarity region, n, in our NLFFF model at
a preflare time 18:36 UT, and separate the field lines landing
at the positive p1 and p2 regions by using red and blue,
respectively. The color depth also denotes the loop height.
The extrapolation result evidently shows that the sheared fields
stemming from n consist of closed field lines at chromospheric
heights (∼2.1 Mm), and that these field lines bifurcate cleanly
into two semi-parallel rows of loops, forming a “fish-bone”-like
structure. Interestingly, the northern (red) and southern (blue)
branches of loops show a distinct asymmetry in height, with the
mean value of the former about double that of the latter. Another
difference between them is found in terms of magnetic twist.
We compute the twist index Tn (in number of turns) defined by
Inoue et al. (2011) as Tn = (1/4π )αL, where α is the mean
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Conclusions
• Sunquakes provide another method to probe energy release during eruption.
• February 15, 2011 quakes only had weak associated white-light emission and 

weak HXR, ruling out backwarming scenario - but the analysis still on-going
• February 15, 2011: strong downflows and supersonic transients are seen at both 

locations;
• But backwarming scenario (WL&HXR emission at quake location) is still seen 

most often - different mechanisms for different quakes?
• Ripples carry information about the source, not just subsurface properties - 

leading to development of flare seismology
• Intriguing indications that flux rope eruption and sun-quakes may be 

connected => significant energy deposition could occur before the main 
particle acceleration.

• Improved methods of detection and better data coverage lead to discovery of 
new events - but many fall into grey area, more work!

• HMI data is great - now we have the opportunity to study sunquakes 
systematically, building up statistics
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