

S.Zharkov University of Hull

#### 2012-10-23T03;08;00,00





S.Zharkov University of Hull

#### 2012-10-23T03;08:00,00



# Flare seismology: implications for energy transport in flares

S.Zharkov University of Hull

2012-10-23T03;08:00,00

#### **Geometric asymptotics**

Acoustic wave equation for solar interior:

$$\frac{1}{c^2} \left( \frac{\partial^2}{\partial t^2} + \omega_{ac}^2 \right) \Psi - \nabla^2 \Psi = 0 \qquad \omega_{ac} = \frac{c^2}{4H_{\rho}^2} \left( 1 - 2\mathbf{n} \cdot \nabla H_{\rho} \right)$$
$$\Psi(\mathbf{r}, t) = \sum_m^{\infty} \frac{A_m(\mathbf{r}, t)}{(i\Lambda)^m} e^{i\Lambda\varphi(\mathbf{r}, t)}.$$

Guillemin V., Sternberg S., Geometric Asymptotics; Kravtsov, Orlov, Waves in inhomogenous media; Gough D. O., 1993, in Astrophysical Fluid Dynamics - Les Houches 1987, J.-P. Zahn & J. Zinn-Justin, ed., pp. 399-560

#### **Geometric asymptotics**

**国 ③ 時** 

Acoustic wave equation for solar interior:

$$\frac{1}{c^2} \left( \frac{\partial^2}{\partial t^2} + \omega_{ac}^2 \right) \Psi - \nabla^2 \Psi = 0 \qquad \omega_{ac} = \frac{c^2}{4H_{\rho}^2} \left( 1 - 2\mathbf{n} \cdot \nabla H_{\rho} \right)$$
$$\Psi(\mathbf{r}, t) = \sum_{m}^{\infty} \frac{A_m(\mathbf{r}, t)}{(i\Lambda)^m} e^{i\Lambda\varphi(\mathbf{r}, t)}.$$



eikonal equation, find phase function

# transport equations, find amplitudes

Guillemin V., Sternberg S., Geometric Asymptotics; Kravtsov, Orlov, Waves in inhomogenous media; Gough D. O., 1993, in Astrophysical Fluid Dynamics - Les Houches 1987, J.-P. Zahn & J. Zinn-Justin, ed., pp. 399-560

#### **Initial conditions for monochromatic spherical source**





### **Initial conditions for monochromatic spherical source** $\int x = x_s + r \cos \theta$



7 (O) 👾 🥠 (N)

$$\begin{aligned} x &= x_s + r \cos \theta \\ z &= z_s + r \sin \theta \\ t &= t_0 \end{aligned}$$
(3.9)

The initial field on this surface is described as

$$\Psi_0 = A_0(\theta, t_0) e^{i\varphi_0(\theta, t_0)}.$$
(3.10)

The unknown initial wavenumbers and frequency,  $k_{h0} = \frac{\partial \varphi_0}{\partial x}$ ,  $k_{z0} = \frac{\partial \varphi_0}{\partial z}$  and  $\omega_0 = -\frac{\partial \varphi_0}{\partial t}$ , are found from the system:

$$\begin{cases} \frac{\partial \varphi_0}{\partial t_0} = k_{h0} \frac{\partial x}{\partial t_0} + k_{z0} \frac{\partial z}{\partial t_0} - \omega_0 \frac{\partial t}{\partial t_0}, \\ \frac{\partial \varphi_0}{\partial \theta} = k_{h0} \frac{\partial x}{\partial \theta} + k_{z0} \frac{\partial z}{\partial \theta} - \omega_0 \frac{\partial t}{\partial \theta}, \\ k_{h0}^2 + k_{z0}^2 = \frac{\omega_0^2 - \omega_{ac}^2}{c^2}. \end{cases}$$
(3.11)

Let us now consider spherical monochromatic homogeneous source of some fixed frequency,  $\omega_f$ , i.e.  $\varphi_0(\theta, t_0) = -\omega_f t_0$ . Then from the above  $\omega_0 = \omega_f$  and  $k_{h0} \sin \theta = k_{z0} \cos \theta$ . This implies that in this configuration (see Figure 1)  $\theta$  can be viewed as ray take-off angle and all rays generated from S are of the same frequency, so frequency subscripts can be dropped. Define  $k_s^2(z_s, \omega) = \frac{\omega^2 - \omega_{ac}^2}{c^2} \Big|_{z=z_s}$ , then horizontal and vertical wavenumbers can be rewritten as  $k_{h0} = k_s \cos \theta$ , and  $k_{z0} = k_s \sin \theta$ . Since Hamiltonian is independent of horizontal coordinate and time,  $\omega$  and  $k_h$  are constant on each ray. Then so is the horizontal phasespeed of a ray,  $v_{ph}^2 = \frac{\omega^2}{k_h^2} = \frac{c^2}{\cos^2 \theta} \frac{1}{1 - \frac{\omega_{ac}^2}{2}}$ .

Zharkov 2013



#### Acoustic waves in the Sun, geometric optics, 2D





#### Acoustic waves in the Sun, geometric optics, 2D

source





#### Acoustic waves in the Sun, geometric optics, 2D

source





#### Acoustic waves in the Sun, geometric optics, 2D



### Surface ripples, geometric optics, 3D



THE UNIVERSITY OF HULL

### Surface ripples, geometric optics, 3D





#### Q: How are the sun-quakes generated?



### Q: How are the sun-quakes generated?

- HD shocks via plasma heating by particle beams
  - electron, proton or mixed (Zharkova & Zharkov, 2007, ApJ) •





# Q: How are the sun-quakes generated?

- HD shocks via plasma heating by particle beams
  - electron, proton or mixed (Zharkova & Zharkov, 2007, ApJ)  $(2^{\text{NUCLEAR}})^{\text{NUCLEAR}}$
- Backwarming heating (e.g.Donea et al, 2006)
  - cospatial with WL & HXR





# Q: How are the sun-quakes generated?

- HD shocks via plasma heating by particle beams
  - electron, proton or mixed (Zharkova & Zharkov, 2007, ApJ)<sup>NUCLEAR γ-RAYS</sup>
- Backwarming heating (e.g.Donea et al, 2006)
  - cospatial with WL & HXR



 Magnetic field restructuring - Lorentz torce transients (Hudson et al, 2008, Fisher et al., 2012)



### **Q: How are the sun-quakes** generated?

- HD shocks via plasma heating by particle beams
  - electron, proton or mixed (Zharkova & Zharkov, 2007, ApJ)
- **Backwarming heating** (e.g.Donea et al, 2006)
  - cospatial with WL & HXR



- Magnetic field restructuring Lorentz torce transients (Hudson et al, 2008, Fisher et al., 2012)
- Wave interaction? quasi-periodic pulsations? (Fletcher & Hudson 2008)

#### sunquake detection















### NOAA11158: M2.2 Feb 14, 17:26



THE UNIVERSITY OF HULL

### NOAA11158: M2.2 Feb 14, 17:26



### NOAA11158: M2.2 Feb 14, 17:26





#### February 15, 2011 - X2.2 flare



#### February 15, 2011 - X2.2 flare







Zharkov et al., ApJL, 2011

















Mg, 2011-02-15T01:49:57.30







140 Mg160011+80-15001:49250.30240







Zharkov et al., ApJL, 2011



140 Mg160011+80-15001:49250.30240























#### Feb15 flare: HXR emission





#### Feb15 flare: HXR emission

vertical lines dashed: 01:50UT solid: 01:56 UT



#### Feb15 flare: HXR emission Doppler Difference 01:49:57



Alvarado-Gomez et al, 2012



# Feb15 flare: HXR emission Doppler Difference 01:49:57

Alvarado-Gomez et al, 2012 Running Difference 02:08:42



THE UNIVERSITY OF HULL

February quake: Variations at TD sources





## February quake: Variations at TD sources



# February quake: Variations at TD sources



FIG. 4.— White light flare footpoints overlaid on a red continuum image.

#### velocity transients at SQ sources

![](_page_50_Picture_2.jpeg)

![](_page_51_Picture_0.jpeg)

#### velocity transients at SQ sources

![](_page_51_Picture_2.jpeg)

![](_page_52_Picture_0.jpeg)

#### 2011.02.15\_01:47:54\_TAI

![](_page_52_Picture_3.jpeg)

![](_page_53_Picture_1.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_53_Picture_3.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_57_Picture_0.jpeg)

Mm

2011-02-15T01:49:57.30

![](_page_57_Figure_3.jpeg)

![](_page_57_Figure_4.jpeg)

Mm

![](_page_57_Picture_5.jpeg)

![](_page_57_Picture_6.jpeg)

Mm

Estimated quake start-times: S1: 01:50:15 \pm 45s S2: 01:49:30 \pm 45s

Zharkov et al., SolPhys 2013

Monday, 11 August 14

40

30

20

10

0

0

![](_page_58_Picture_0.jpeg)

2011-02-15T01:49:57.30

![](_page_58_Figure_3.jpeg)

![](_page_58_Picture_4.jpeg)

Zharkov et al., SolPhys 2013

Estimated quake start-times: S1: 01:50:15 \pm 45s S2: 01:49:30 \pm 45s

![](_page_59_Picture_0.jpeg)

2011-02-15T01:49:57.30

![](_page_59_Figure_3.jpeg)

![](_page_59_Picture_4.jpeg)

14 - 22 km/s

![](_page_59_Figure_6.jpeg)

![](_page_60_Picture_1.jpeg)

initial conditions can incorporate moving spherical source:

 $\mathbf{x}_s = \mathbf{x}_s(t)$  $\mathbf{v} = \frac{d\mathbf{x}_s}{dt}$  $\omega_0 = \omega_f + \mathbf{k}_0 \cdot \mathbf{v}$ 

#### moving source

· @ 👻 永 📐

initial conditions can incorporate moving spherical source:

$$\mathbf{x}_s = \mathbf{x}_s(t)$$
$$\mathbf{v} = \frac{d\mathbf{x}_s}{dt}$$
$$\omega_0 = \omega_f + \mathbf{k}_0 \cdot \mathbf{v}$$

#### supersonic source?

 $\varphi_0(\theta, \phi, t_0) = 0$ . This corresponds to the wave-field on initial surface simply written as  $\Psi_0 = A_0(\theta, \phi, t_0)$ , meaning that the pressure perturbation,  $\rho^{\frac{1}{2}} \delta p$ , is varying slowly on the initial surface. As in previous Section 5.2,  $\frac{\partial \varphi_0}{\partial \theta} = 0$ ,  $k_{z0} = k_{h0} \tan \theta$ , system (3.4) leads to the following solution:

$$k_0^2 = \frac{\omega_{ac}^2}{v^2 \cos^2 \gamma - c^2},$$
(5.4)

$$\omega_0 = \mathbf{k}_0 \cdot \mathbf{v} = k_0 v \cos \gamma, \tag{5.5}$$

$$k_{h0} = k_0 \cos \theta, \ k_{z0} = k_0 \sin \theta,$$
 (5.6)

where  $\mathbf{k}_0$  is the wavevector,  $\mathbf{v}$  is source velocity,  $v = |\mathbf{v}|$ , and  $\gamma$  is the angle between the two vectors. From the above it follows that non-evanescent acoustic waves ( $k_0^2 > 0$ ) are generated if and only if the source moves with supersonic speed  $v^2 > c^2$ . Moreover, let us rewrite (5.5) as

$$\omega_0 = \omega_{ac} \frac{\cos \gamma}{\sqrt{\cos^2 \gamma - \frac{c^2}{v^2}}},\tag{5.7}$$

#### supersonic source 2d

![](_page_62_Figure_1.jpeg)

## NOAA 11158, los magnetic field, SDO/HMI

![](_page_63_Picture_1.jpeg)

### NOAA11158: M6.6 Feb 13, 17:38

![](_page_64_Figure_1.jpeg)

2011-02-13T17:32:42.10

![](_page_64_Figure_3.jpeg)

2011-02-13T17:34:57.10

![](_page_64_Figure_5.jpeg)

#### NOAA11158: M6.6 Feb 13, 17:38

![](_page_65_Figure_1.jpeg)

2012-07-06T19:23:10.70 2012-07-06T19:23:10.70 40 40 /mHz 3 20 20 box1 2 N 0 ₹2 -20 -201 6.0mHz -40 -40-20 20 -20 20 40 -20 0 -40-400 0 Mm Mm

![](_page_66_Figure_2.jpeg)

7mHz 6mHz

20

40

![](_page_66_Figure_3.jpeg)

![](_page_66_Figure_4.jpeg)

20 -

 $\cap$ 

20

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_1.jpeg)

![](_page_69_Figure_1.jpeg)

Wang et al, 2014

![](_page_69_Picture_3.jpeg)

#### THE UNIVERSITY OF HULL

![](_page_70_Picture_0.jpeg)

#### Conclusions

- Sunquakes provide another method to probe energy release during eruption.
- February 15, 2011 quakes only had weak associated white-light emission and weak HXR, ruling out backwarming scenario but the analysis still on-going
- February 15, 2011: strong downflows and supersonic transients are seen at both locations;
- But backwarming scenario (WL&HXR emission at quake location) is still seen most often different mechanisms for different quakes?
- Ripples carry information about the source, not just subsurface properties leading to development of flare seismology
- Intriguing indications that flux rope eruption and sun-quakes may be connected => significant energy deposition could occur before the main particle acceleration.
- Improved methods of detection and better data coverage lead to discovery of new events but many fall into grey area, more work!
- HMI data is great now we have the opportunity to study sunquakes systematically, building up statistics