EUV Spectroscopy of the Flaring Solar Chromosphere Ryan Milligan (QUB/CUA/NASA-GSFC)

Solar and Stellar Flares: Observations, Simulations and Synergies Prague, 23-27 June 2014

Chromospheric Flares

- The most direct manifestation of flare heating and energy transport
- Origin of coronal material though chromospheric evaporation
- Most of a flare's energy is radiated by chromospheric plasma
- Location of HXR emission; a crucial diagnostic of accelerated electrons
- Source of geoeffective emission, particularly during a flare's impulsive phase

Outstanding Science Questions

- How is energy stored in the corona transferred to the lower solar atmosphere during flares?
 - Coulomb collisions? Backwarming? Conduction fronts? Proton beams? Alfvén waves?
- At what depth (layer? height?) is this energy deposited?
 - Upper/lower chromosphere? Photosphere?
- What is the dominant emission mechanism during a flare?
 - Recombination continua? Blackbody? Emission lines?
- How is the anomalous 0.511 MeV line width produced?
 - Doppler broadening at large column depths?
- And how does chromospheric flare emission tie in with the broader field of space weather?
 - Chromospheric Lya affects the ionospheric D-layer. Impulsive vs. gradual? Disc centre vs. limb?

EUV Spectroscopy as a Diagnostic of Flare Plasma

- Temperatures and densities (from line ratios)
- Flow velocities (from line shifts)
- Turbulence, opacity and pressure broadening (from line widths)
- Differential Emission Measures and Emission Measure Distributions (from line intensities)
- Energetics (from line and continuum fluxes)
- Effective and colour temperatures (from the slope and height of the continua)
- Elemental abundances (from equivalent widths, line/ continuum ratios)

EUV Imaging Spectrometer (EIS)

Hinode/EIS can provide spatially resolved (albeit, rastered) observations of multiple layers of the solar atmosphere simultaneously.

- 14 December 2007: C1.1 Flare
- Before X-band problem and after 1st RHESSI anneal
- 3.5 minute raster cadence (CAM_ARTB_RHESSI_b_2)
- He II, O IV/V/VI, Mg V/VI/VII, Si X, Ca XVII, Fe VIII-XXIV
- 5 (6?) density sensitive line pairs
- Milligan & Dennis (2009), Milligan (2011), Ning & Cao (2011), Graham et al. (2013), Graham et al. (2014; In Prep)

Chromospheric Evaporation

Milligan & Dennis (2009)

Modelled evaporation velocities in response to measured electron beam parameters from RHESSI give remarkably good agreement

Electron Density

Milligan (2011), Graham et al. (2013)

FP densities $> 10^{11}$ cm⁻³

Column Depth $4\pi I = 0.83 \int G(T,N_e)N_e^2 dh$

Column Emission Measure $EM_{col} = \int N_e^2 dh$

Nonthermal Line Broadening

 $W_{tot} = W_{inst} + W_{th} + W_{nth}$

Correlation with Doppler velocity implies unresolved Doppler components (turbulence)

Fe XIV 264A Fe XIV 274A FP1 (r=0.04)
FP2 (r=0.54) FP1 (r=0.06) FP2 (r=0.66 (Km 60 60 50 50 40 40 10.0 10.5 8.5 9.0 9.5 9.5 10.0 10.5 Log Electron Density (cm-3) Log Electron Density (cm-3) Milligan (2011)

Correlation with density suggests either opacity or pressure broadening (assuming ionization equilibrium)

See also Doschek et al. (2013) and Young et al. (2013)

EUV Variability Experiment (EVE)

- "Sun-as-a-star" observations
- MEGS-A: 60-370Å
 - Emission lines formed 10⁴-10⁷K, including He II 304Å, free-free & He II continua
- MEGS-B: 370-1050Å
 - He I & Lyman continua
- MEGS-P: 1216Å
 - Lyman-alpha line (broad-band diode)
- All components have 10s cadence, but MEGS-B & -P have reduced duty cycles due to instrumental degradation

On May 26th, 2014 MEGS-A suffered a power anomaly and is no longer taking data

Hock (2012)

- MEGS-B has suffered significant degradation since launch
- This has been corrected using data from underflight rocket calibration
- Version 4 data was released on December 20, 2013
- Current MEGS-B observing restricted to 3 hours per day (0800-1100 UT)

EVE flare observations for the MEGS B instrument. MEGS B is nominally exposed for only a few hours per day, however during flare campaigns, MEGS B is exposed for a full 24 hour period.

ownload this table as a CSV file.

Read the instructions on how to use this page her

ines the magnitude of flares observed (C and above) during MEGS B exposure

Date 🛦 🔻	NOAA GOES X-ray Class C Flares A V	NOAA GOES X-ray Class M Flares A V	NOAA GOES X-ray Class X Flares A V	Display Data 🛦 🔻
				· · · · · · · · · · · · · · · · · · ·
2011/221 (Aug 09)	C2.2, C2.4, C2.0	M2.5	X6.9	(prg) (prf) (prg)
2012/067 (Mar 07)			X5.4, X1.30	prg pdf plot
2013/309 (Nov 05)	C1.6, C8.0, C2.5, C2.3, C2.1	M2.5, M1.0	X3.3	(Pro) (prit) (prin)
2013/302 (Oct 29)	C1.7, C2.1, C3.7, C2.3, C6.3, C2.0, C9.4		X2.3	and the gen
2011/046 (Feb 15)	C2.7, C4.8, C1.0, C4.8, C1.7, C6.6, C1.3		X2.2	MA MA
2011/249 (Sep 06)		M5.3	32.1	and the gen
2011/307 (Nov 03)	C4.4, C3.4, C1.5, C2.2, C4.5, C5.4, C5.8, C9.2	M2.1	X1.9	prg pdf plot
2011/250 (Sep 07)	C3.0, C1.6		X1.8	tolq the gra
2013/133 (May 13)	C9.3, C2.0, C4.5, C1.7, C8.3	M1.3	X1.7, X2.8	eng (ent) (eng
2013/298 (Oct 25)	C3.4, C7.9, C3.2, C3.6	M1.0, M1.3, M2.3, M1.9	X1.7	prg pdf plot
2014/007 (Jan 07)			X1.2	eng (eng
2013/135 (May 15)	C1.1, C1.1		X1.2	(prg) (pit) (pist)
2013/312 (Nov 08)	CS.7, C1.4, C1.1		X1.1	prg pdf pist
2012/065 (Mar 05)	C3.4, C2.4, C2.3, C5.9, C1.2, C5.5, C7.8, C9.8, C4.6, C6.8, C1.7	M1.3	X1.1	prg pdf plot
2013/323 (Nov 19)	C2.1, C1.6		X1.0	prg pt pt
2013/301 (Oct 28)		M5.1, M1.4, M2.8	X1.0	and the gen
2014/115 (Apr 25)	C1.0			(prg) (pit) (pict)
2014/114 (Apr 24)	C2.9			pro pat pice

http://lasp.colorado.edu/eve/data_access/

<u>evewebdata/interactive/</u> <u>flare_campaign_observations.html</u>

Complete EVE spectra during 15 Feb. 2011 X2.2 flare (10 s cadence)

RANSAC: RANdom Sample Consensus

 An iterative method to estimate the parameters of a mathematical model from a set of observed data that contains outliers (Fischler & Bolles 1981)

• In the case of EVE data we assume that emission lines are outliers

RANSAC: RANdom Sample Consensus

- Step 1: randomly select a subset of data points (5%) and fit with chosen function (power law). Stop when acceptable χ² is reached.
- Step 2: define "inliers" as all data points that lie within some threshold of the best fit.
- Step 3: fit inliers with chosen function and extrapolate to shorter wavelengths
- Repeat for upper and lower limits, and for each 10 second integration throughout a flare

EVE can now measure these continua at high cadence and with high precision

We have developed a fitting routine (RANSAC; RANdom SAmple Consensus) to model these emissions

This provides timing and energy information throughout a flare

Milligan et al. (2012, 2014)

Fits can then be used to determine the relative increases as a function of $\boldsymbol{\lambda}$

The slope (power law index) can be measured as a function of time

Reveals the temperature of the continuum $b_1(\tau=1)=B_{\lambda}(T_c)/I_{\lambda}(\sigma=1)$, and the depth of formation, ionisation state, etc.

F10 and F11 models from Allred et al. (2005)

- Radiative hydrodynamic models predict that continuum emission dominate over emission line radiative losses
- EUV, UV, and WL continuum energetics can be compared with line emission (He II 304Å, Lyα, Ca II H) for 15 Feb. 2011 flare
- Timing showed most emission to be synchronous with power in nonthermal electrons

Milligan et al. (2014)

Spectral Energy Distribution ($\lambda f(\lambda)$) plot for 15 February 2011 flare

Despite exceptional data coverage, only 15% of the energy deposited by nonthermal electrons was detected through chromospheric observations during this event (Milligan et al. 2014)

	λ (Å)	Energy (erg)
Lya	1170-1270	1.2×10
He II line	303-305	3.4x10
UV cont.	1600-1740	2.6x10
C IV line + UV	1464-1609	1.7×10
Lyman cont.	504-912	1.8×10
Ca II H line	3967-3970	5.5x10
He I cont.	370-504	3.0x10
He II cont.	200-228	1.6×10
Green cont.	5548-5552	1.5×10
Red cont.	6682-6686	1.4×10
Blue cont.	4502-4506	1.2×10
E		3x10
E		>2x10

- Beam heating parameters were derived from HXR observations from RHESSI
- These were used to drive a numerical simulation (RADYN)
- Preliminary results showed that the relative continuum intensities were in good agreement
- However, the He II 304Å line was predicted to be stronger than Lya, while the observations showed that the reverse was true

- Once an agreement is met between theory and observation, we can:
 - determine the depth at which electrons lose their energy
 - determine the height at which various continua are formed
 - predict what unobserved quantities would have been
 - establish whether low-energy cut-off in electron spectrum is accurate

What next..?

- More co-ordinated observing campaigns (Max Millennium program):
 - SDO/EVE+AIA, Hinode/EIS+SOT, RHESSI, IRIS, ROSA, IBIS,...
- Comparisons between observations and theory...
 - RADYN, HYDRAD, HyLoop, NRL, etc.
- ... preferably using RHESSI (or Fermi) data as input
- Statistical analyses of flaring events (using EVE)
- Comparison with stellar flare observations (e.g. EUVE, Ultracam)