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* The most direct manifestation of flare  Fiote
heating and energy transport ‘

» Origin of coronal material though

chromospheric evaporation T
P P RIS Milligan (2008)

» Most of a flare’s energy is radiated by . U iy,
chromospheric plasma _ Q 2,

» | ocation of HXR emission; a crucial
diagnostic of accelerated electrons

e Source of geoeffective emission,
particularly during a flare’'s impulsive
phase

X (arcsecs)




Outstanding Science Questions

 How is energy stored in the corona transferred to the lower solar atmosphere during
flares?

- Coulomb collisions? Backwarming? Conduction fronts? Proton beams? Alfvén
waves?

At what depth (layer? height?) is this energy deposited?

- Upper/lower chromosphere? Photosphere?

What is the dominant emission mechanism during a flare?

- Recombination continua? Blackbody? Emission lines?

How is the anomalous 0.511 MeV line width produced?




EUV Spectroscopy as a 1
Diagnostic of Flare Plasma |-

 Temperatures and densities (from line ratios)
* Flow velocities (from line shifts)

e Turbulence, opacity and pressure broadening (from line
widths)

o Differential Emission Measures and Emission Measure
Distributions (from line intensities)

284.35

e Energetics (from line and continuum fluxes)

» Effective and colour temperatures (from the slope and
height of the continua)

* Elemental abundances (from equivalent widths, ling/
continuum ratios)




EUV Imaging Spectrometer (EIS
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Before X-band problem and after 1st RHESSI
anneal

3.5 minute raster cadence
(CAM_ARTB_RHESSI _b_2)

He Il, O IVNVNI, Mg VVINIL, Si X, Ca XVII, Fe
VIH-XXIV

5 (67) density sensitive line pairs

Milligan & Dennis (2009), Milligan (2011),
Ning & Cao (2011), Graham et al. (2013),
Graham et al. (2014; In Prep)
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Chromospheric Evaporation

Milligan & Dennis (2009)
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Modelled evaporation velocities in
response to measured electron
beam parameters from RHESSI give
remarkably good agreement




Electron Density Column Depth Column Emission Measure
Milligan (2011), Graham et al. (2013) 47tI = O 83IG(T Ne)Nezdh EMcol—fNe dh
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& Nonthermal Line Broadening
‘ Wiot = Winst + Win + Whin

Correlation with Doppler velocity
implies unresolved Doppler
components (turbulence)
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Nosthermal Velocity {km s°')

.

Correlation with density suggests
elther opacity or pressure broadening
(assuming ionization equilibrium)

See also Doschek et al. (2013) and
Young et al. (2013)




EUV Variability Experiment (EVE)

“Sun-as-a-star” observations

MEGS-A: 60-370A

MEGS-A
He Il edge Lyman edge
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Emission lines formed 10*-10K,
including He Il 304A, free-free &
He |l continua

MEGS-B: 370-1050A
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He II continuum
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- Lyman-alpha line (broad-band Wavelength (nm)
diode)

All components have 10s cadence,
but MEGS-B & -P have reduced
duty cycles due to instrumental On May 26th, 2014 MEGS-A suffered a

degradation power anomaly and is no longer taking data



Hock (2012)
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MEGS-B has suffered significant degradation : gt 7
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http://lasp.colorado.edu/eve/data_access/
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Complete EVE spectra during
15 Feb. 2011 X2.2 flare (10 s cadence)




RANSAC: RANdom Sample Consensus

 An iterative method to estimate the
parameters of a mathematical model from a
set of observed data that contains outliers
(Fischler & Bolles 1981)

 |n the case of EVE data we assume that
emission lines are outliers




RANSAC: RANdom Sample Consensus

RANSAC: Lyman Continuum - Inliers

Step 1: randomly select a subset of
data points (5%) and fit with chosen
function (power law). Stop when

acceptable x?

Step 2: define

IS reached.

“Inliers” as all data

points that lie within some threshold

of the best fit.

Step 3: fit inlie

rs with chosen function

and extrapolate to shorter

wavelengths

Repeat for up
and for each 1

oer and lower limits,
O second integration

throughout a f

are



EVE can now measure these continua at high cadence and
with high precision

We have developed a fitting routine (RANSAC; RANdom
SAmple Consensus) to model these emissions

This provides timing and energy information throughout a flare

SDO/EVE MEGS~-B 15-Feb=2011 01:55:32.784 SDO/EVE MEGS-B Lyman and He I Continua
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Milligan et al. (2012, 2014)



Fits can then be used to determine the relative increases as a
function of A

The slope (power law index) can be measured as a function
of time

Reveals the temperature of the continuum b1(t=1)=Bx\(T¢)/
\(o=1), and the depth of formation, ionisation state, etc.

Slope of the Lyman continuum
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F10 and F11 models from Allred et al. (2005)

-A
]
-
=g
L
|
(-

* Radiative hydrodynamic models predict
that continuum emission dominate over
emission line radiative losses

 EUV, UV, and WL continuum energetics
can be compared with line emission (He
Il 304A, Lya, Ca |l H) for 15 Feb. 2011

ﬂare ’ ( He 1T line m.ﬁ

He I continuum <504
Lyman continuum <91 2A
Lyman alpha line 1216A
C IV line+UV continuum 1600A

* Timing showed most emission to be : A
synchronous with power in nonthermal | o e 5

electrons L
Milligan et al. (2014)
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Spectral Energy Distribution (Af(A))
plot for 15 February 2011 flare

Despite exceptional data coverage,
only 15% of the energy deposited by
nonthermal electrons was detected
through chromospheric observations
during this event (Milligan et al. 2014)

A (,5\) Energy (erg)
AYe! 1170-1270 1.2x10
He Il line 303-305 3.4x10
UV cont. 1600-1740 2.6x10
CIVline + UV| 1464-1609 1.7x10
Lyman cont. 504-912 1.8x10
CallHline | 3967-3970 5.5x10
He | cont. 370-504 3.0x10
He Il cont. 200-228 1.6x10
Green cont. | 5548-5552 1.5x10
Red cont. 6682-6686 1.4x10
Blue cont. 4502-4506 1.2x10
E 3x10
E >2x10
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« Beam heating parameters were derived from
HXR observations from RHESSI

(s detector)
3

Corrected Count Rate
2

e These were used to drive a numerical
simulation (RADYN)

Lyman alpha line
Lyman continuum
He L 304 line

He 1 continuum
He U continuum

* Preliminary results showed that the relative
continuum intensities were in good
agreement

» However, the He Il 304A line was predicted to
be stronger than Lya, while the observations
Model-Predicied — — - - showed that the reverse was true

01:48 01:52 01:56
Start Time (15-Feb-11 01:44:00)
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 Once an agreement is met between theory and
observation, we can:

(s detector)
3

Corrected Count Rate
2

- determine the depth at which electrons lose
their energy

[—
o —
» 2

Lyman alpha line
Lyman continuum

i ccoman . - determine the height at which various
| continua are formed

- predict what unobserved guantities would
have been

Observed - establish whether Ipw—energy cut-off in
Model-Predicted ===~ electron spectrum is accurate

01:48 01:52 01:56
Start Time (15-Feb-11 01:44:00)




What next..”

* More co-ordinated observing campaigns (Max Millennium
program):

- SDO/EVE+AIA, Hinode/EIS+SOT, RHESSI, IRIS, ROSA, IBIS,...

 Comparisons between observations and theory...
- RADYN, HYDRAD, Hyl oop, NRL, etc.

e .. preferably using RHESSI (or Fermi) data as input




