CHARACTERISTICS OF SOLAR FLARES: CORONAL OBSERVATIONS, MHD SIMULATIONS AND 3D MODELLING

ACKNOWLEDGMENTS: GUILLAUME AULANIER, PASCAL DEMOULIN LESIA - OBSERVATOIRE DE PARIS

WHAT ARE FLARES?

(Def? Observations?)

ARE THEY ALL THE SAME?

(Differences confined/eruptive flares)

LINK WITH TOPOLOGY

How/where does magnetic reconnection occur?

NUMERICAL MODELS VS OBSERVATIONS

How do they complement each other?

Flares (confined, eruptive): definition and observations ⇒ What happens?

Confined/eruptive flares: difference in drivers \implies What drives flares?

The topology of flares \Rightarrow Location of energy release?

Prediction from models \mapsto What to look for?

WHAT IS A FLARE?

« Flare »: sudden brightening in solar atmosphere

Schrijver et al. (2011), 15/02/11 X-class flare

WHAT IS A FLARE? CONFINED VS ERUPTIVE

« Flare »: sudden brightening in solar atmosphere

Schrijver et al. (2011), 15/02/11 X-class flare

Flares can be **eruptive** or **confined**

Svestka (1986): «confined» and «ejective»

ON THE VARIETIES OF SOLAR FLARES

ZDENEK SVESTKA Laboratory for Space Research Beneluxlaan 21 3527 HS Utrecht The Netherlands

WHAT IS A FLARE? CONFINED VS ERUPTIVE

« Flare »: sudden brightening in solar atmosphere

Schrijver et al. (2011), 15/02/11 X-class flare

Flares can be **eruptive** or **confined**

Svestka (1986): «confined» and «ejective»

Eruptive flares: associated with a CME

Eruptive flares

OBSERVATIONAL CHARACTERISTICS - CONFINED FLARES

Flare - Emission & Loops

Flare ribbons

OBSERVATIONAL CHARACTERISTICS - ERUPTIVE FLARES

Pre-eruptive sigmoid & filament (not always)

Rust & Kumar (1996),Green & Kliem (2009), Schmieder (2013)

Aulanier, Janvier & Schmieder (2012)

OBSERVATIONAL CHARACTERISTICS – ERUPTIVE FLARES

OBSERVATIONAL CHARACTERISTICS - ERUPTIVE FLARES

Flares (confined, eruptive): definition and observations \implies What happens?

Confined/eruptive flares: difference in drivers \mapsto What drives flares?

The topology of flares \Rightarrow location of energy release?

Prediction from models \mapsto What to look for?

HOW TO EXPLAIN THE ENERGY RELEASE?

Energy of a flare

Schrijver et al. (2012)

Where does the (free) energy come from?

Studies of magnetic field show right orders to explain flaring regions

Ex: Metcalf et al. (2005), but limited use of extroplation: see De Rosa (2009)

MAGNETIC FIELD FREE ENERGY

 \mapsto Heat, kinetic energy, energetic particles

HOW TO EXPLAIN THE ENERGY RELEASE?

Energy of a flare

 $10^{28} \sim 10^{33} \,_{\rm erg}$

Schrijver et al. (2012)

Where does the (free) energy come from?

Studies of magnetic field show right orders to explain flaring regions

Ex: Metcalf et al. (2005), but limited use of extroplation: see De Rosa (2009)

MAGNETIC FIELD FREE ENERGY

What process?

60s: Sweet and Parker proposed: magnetic reconnection

<u>Separatrices in 2D \rightarrow current sheet \rightarrow reconnection</u>

Early developments by: Parker (1957, 1963), Sweet (1958), Syrovatskii (1981)

 \mapsto Heat, kinetic energy, energetic particles

RECONNECTION: OBSERVATIONAL EVIDENCES

Hard X-ray source above the loop top:

particle acceleration at reconnection site

SXR high temperature ridges along outer or newly formed loops: heating takes place

CONFINED FLARES DRIVERS: OBSERVATIONS

LARGE SCALE FLUX EMERGENCE

New polarities emerging in older region

⇒<u>Several B-connectivity domains involved</u>

Photospheric diverging motions

 \mapsto <u>Coronal loop expansion</u>

Favorable conditions for mag. reconnection

AR 11123: magnetic flux 🛪 70%/1 day

Mandrini et al. (2014)

★ See Mandrini's talk (Thursday)

CONFINED FLARES DRIVERS: OBSERVATIONS

Mandrini et al. (2014)

★ See Mandrini's talk

LARGE SCALE FLUX EMERGENCE

New polarities emerging in older region

⇒<u>Several B-connectivity domains involved</u>

Photospheric diverging motions

 \mapsto <u>Coronal loop expansion</u>

Favorable conditions for mag. reconnection

CONFINED FLARES DRIVERS: NUMERICAL MODELS

EVOLUTION OF CONFINED FLARES? OHM code

Observationally-driven High-order MHD code

(~21h)

time

3D, non-uniform mesh, finite difference, predictor-corrector g = 0 $\,$

Aulanier, Démoulin & Grappin (2005)

Masson et al. (2009)

7:38 U SoHO/ MDI 00:03 U 11/16/200 06:27 U 4:24 UI 11/16/2002

EVOLUTION OF CONFINED FLARES? OHM code

- Data-driven (from potential extrapolation)
- Physical regime: $\eta_{coronal} = cst$, $\beta \neq 0$
- Photospheric diverging motions (as observed)

7:38 SoHO/ MDI 00:03 U 11/16/2002 06:27 UI 11/16/2002 4:24 UI

(~21h)

time

Masson et al. (2009)

EVOLUTION OF CONFINED FLARES? OHM code

Photospheric diverging motions (as observed)

 \mapsto <u>Reconnection in the corona</u>

Masson et al. (2009)

LONG TERM EVOLUTION OF ACTIVE REGIONS

Shearing coronal loops
 Converging motions at PIL
 Flux dispersal and B decrease
 Flux cancellation at PIL

Démoulin et al. (2002) van Driel Gesztelyi et al. (2003) Martin et al. (1985) Schmieder et al. (2008) Park et al. (2010) Green et al. (2011) ...

ERUPTIVE FLARES DRIVERS: NUMERICAL MODELS

CORONAL RESPONSE TO FLUX DISPERSION

- Magnetic flux density drops
- ightarrow coronal tension decreases

✤ B cancels at PIL

 \rightarrow magnetic flux decrease in photosphere \rightarrow flux rope formation in corona

Bz photospheric

photosphere

Amari et al. (2003,2011) MacKay & van Ballegooijen (2006) Yeates & MacKay (2009)

\mapsto Favorable conditions for triggering eruptions

★ See Louis' talk (Tuesday)

ERUPTIVE FLARES DRIVERS: NUMERICAL MODELS

THRESHOLD FOR ERUPTIONS?

Aulanier, Török, Démoulin & DeLuca (2010)

Photospheric magnetic diffusion of B_{x,y,z}

Aulanier, Török, Démoulin & DeLuca (2010)

Photospheric shearing motions u_{x,y}

ERUPTIVE FLARES DRIVERS: NUMERICAL MODELS

Aulanier, Török, Démoulin & DeLuca (2010)

Démoulin & Aulanier (2010)

THRESHOLD FOR ERUPTIONS?

Coronal arcades Erupting flux rope Shear transferred from pre-eruptive field lines via reconnection

Formation of flare loops:

- strong-to-weak shear transition
- Low to high altitude formation

Envelope formation of the flux rope

Aulanier, Janvier & Schmieder (2012) Janvier, Aulanier, Démoulin & Pariat (2013) Dudik, Janvier, Aulanier, del Zanna et al. (2014) **ERUPTIVE FLARES DRIVERS: CONCLUSION**

MECHANISMS FOR ERUPTIONS

Also in: Aulanier et al. (2014)

★ See Schmieder's talk (Thursday)

Torus instability (Loss of equilibrium)

Aulanier et al. (2010), Fan et al. (2010), Kliem et al. (2013)

⇒MHD simulations (reproduce observations) + corresponds to <u>observations</u>

MECHANISMS FOR ERUPTIONS

Also in: Aulanier et al. (2014)

★ See Schmieder's talk (Thursday)

Torus instability (Loss of equilibrium)

Aulanier et al. (2010), Fan et al. (2010), Kliem et al. (2013)

 \Rightarrow MHD simulations (reproduce observations) + corresponds to <u>observations</u>

Breakout reconnection above flux rope

Antiochos et al. (1999), Karpen et al. (2012),...

 \Rightarrow Works *only if* not too much magnetic flux at high altitudes

MECHANISMS FOR ERUPTIONS

Also in: Aulanier et al. (2014)

★ See Schmieder's talk (Thursday)

Torus instability (Loss of equilibrium)

Aulanier et al. (2010), Fan et al. (2010), Kliem et al. (2013)

\Rightarrow MHD simulations (reproduce observations) + corresponds to <u>observations</u>

Breakout reconnection above flux rope

Antiochos et al. (1999), Karpen et al. (2012),...

⇒Works *only if* not too much magnetic flux at high altitudes

Many processes that help, or lead to, one of the above:

- Flare reconnection from below
- Purely converging or shearing motions
- Twist emergence into B-free/weak corona
- Flux cancellation through B^{phot} diffusion

- \rightarrow Tension transfer or accel' by recon' jet
- \rightarrow Building-up pressure below
- ightarrow Mass drainage or additional shear flows
- ightarrow Decrease of arcade flux

Flares (confined, eruptive): definition and observations \implies What happens?

Confined/eruptive flares: difference in drivers \implies What drives flares?

The topology of flares \Rightarrow Location of energy release?

Prediction from models \mapsto What to look for?

Various configurations analysed:

Gorbachev & Somov 1989, Mandrini et al. 1991, 1993, Démoulin et al. 1994,

Mandrini et al. 1996, 1997, Schmieder et al. 1997, Aulanier et al. 1998, Gaizauskas et al. 1999, Bagala et al. 2000, Fletcher et al. 2001, Mandrini et al. 2006, Cristiani et al. 2007, Savcheva et al. 2012, Mandrini et al. 2014, ...

MDI magnetogram \rightarrow LFFF extrapolation

Null point
 Field lines close to null point
 (correspond to observed coronal loops!)

 \mapsto Evidence of reco. at null point

But small scale event

- Similar loops present from ~1 h before until late decaying phase of X17
- ⊨>Event independent of X17 flare

Mandrini et al. 2006

DEFINITION OF QUASI-SEPARATRIX LAYERS?

Localized, drastic change of magnetic connectivity (but continuous without null points)

<u>QSL definition</u>: regions where

$$Q = \frac{\|F\|^2}{B_{n,+}/B_{n,-}} >> 1 \quad F = \begin{pmatrix} \partial x_{-}/\partial x_{+} & \partial x_{-}/\partial y_{+} \\ \partial y_{-}/\partial x_{+} & \partial y_{-}/\partial y_{+} \end{pmatrix}$$
"Semaphing degree"

"Squashing degree"

Démoulin et al. (1996), Titov et al. (2002), Pariat et al. (2012)

Same value of Q at both feet of a field line : $Q_{\star} = Q_{\star}$

DEFINITION OF QUASI-SEPARATRIX LAYERS?

Localized, drastic change of magnetic connectivity (but continuous without null points)

Leads to:

<u>QSL definition</u>: regions where

"Squashing degree"

Démoulin et al. (1996), Titov et al. (2002), Pariat et al. (2012)

⇒Slipping reconnection successive reconnection due to the continuous change of connectivity

QSLS IN ERUPTIVE FLARES: ANALYTICAL MODEL

QSLS IN TWISTED CONFIGURATION

Démoulin et al. (1996) Titov (2007) Pariat et al. (2012)

PI

Bz > 0

QSLS IN ERUPTIVE FLARES: OBSERVATIONS – HFT

TOPOLOGY ANALYSIS WITH NLFFF EXTRAPOLATION

Vertical cut

- 1st QSLs from a data-constrained NLFFF model
- More complex than previous analytical model but similarities in shape

⇒HFT are typical structures of sigmoid regions & Flux Ropes

Savcheva et al. (2012a,b)

QSLS IN ERUPTIVE FLARES: 3D MHD SIMULATION - HFT

QSLS IN ERUPTIVE FLARES: 3D MHD SIMULATION - HFT

Current layers: Similar location as QSLs

See also: (Galsgaard et al. 00, 03, Pontin et al. 05, Aulanier et al. 05, 06, Pariat et al. 06, Büchner 06, Dreher et al. 08, ...)

Collapse of the coronal current layer (=thinning)

Prediction from the model (not yet observable)

Janvier, Aulanier, Pariat & Démoulin (2013)

QSLS IN ERUPTIVE FLARES: 3D MHD SIMULATION - HORIZONTAL Q-MAPS

Top views

\mapsto Similar shape as flare ribbons

QSLS IN ERUPTIVE FLARES: 3D MHD SIMULATION – HORIZONTAL Q-MAPS

Janvier et al. (2013)

Chandra et al. (2009)

 ⇒Photospheric currents: footprints of coronal current layer
 ⇒Flare ribbons: photospheric footprints of QSLs/HFT & currents

Standard flare model in 3D

TOPOLOGY: TO PREDICT/UNDERSTAND WHERE RECONNECTION TAKES PLACE

Flares (confined, eruptive): definition and observations \implies What happens?

Confined/eruptive flares: difference in drivers \implies What drives flares?

The topology of flares \Rightarrow Location of energy release?

Prediction from models \Rightarrow What to look for?

Photospheric vertical currents = current ribbons

Photospheric vertical currents = current ribbons

MIHO JANVIER — SOLAR AND STELLAR FLARES — 23/06/2014

Views from Earth

Standard flare model in 3D

Observational evidences!

Janvier, Aulanier, Bommier, Schmieder, et al (2014)

Increase of electric current collapse of the current layer

X-class flare of July 2012

Dudik, Janvier, Aulanier, Del Zanna, et al (2014)

Slipping reconnection with QSLs:

successive change of magnetic connectivity

Leads to:

✤ Apparent field line motion

See also: Aulanier et al. (2007)

✤ Kernel motion

See also: Young et al. (2013)

X-class flare of July 2012

Dudik, Janvier, Aulanier, Del Zanna, et al (2014)

Slipping reconnection with QSLs:

successive change of magnetic connectivity

Janvier, Aulanier, Pariat & Démoulin (2013)

Leads to:

✤ Apparent field line motion

See also: Aulanier et al. (2007)

✤ Kernel motion

See also: Young et al. (2013)

X-class flare of July 2012

Dudik, Janvier, Aulanier, Del Zanna, et al (2014)

ERUPTIVE FLARES: MODEL PREDICTION & FUTUR CONFIRMATION?

QSL reconnection:

Change the particle-beam paths Motion of HXR source along flare ribbons

${\rm H}_{\!\alpha}\,{\rm \&\, HXR}$ sources

Krucker et al. (2003)

CONCLUSIONS

Driver of confined flares: Large flux emergence

New polarities emerging in older region

Driver of eruptive flares: Large flux dispersal

Coronal tension S + Flux rope formation

Torus unstable flux rope

CONCLUSIONS

Topology of flares Null points and QSLs

- QSLs extend the concept of separatrices
- ✤ QSLs: similar locations as currents

 Reconnection at QSLs: slipping reconnection (apparent motion of F.Ls)

Driver of confined flares: Large flux emergence

✤ New polarities emerging in older region

Driver of eruptive flares: Large flux dispersal

Coronal tension > + Flux rope formation

Torus unstable flux rope

CONCLUSIONS

Topology of flares Null points and QSLs

- QSLs extend the concept of separatrices
- ✤ QSLs: similar locations as currents

 Reconnection at QSLs: slipping reconnection (apparent motion of F.Ls)

Driver of confined flares: Large flux emergence

✤ New polarities emerging in older region

Driver of eruptive flares: Large flux dispersal

Coronal tension > + Flux rope formation

✤ Torus unstable flux rope

Model predictions Standard flare model in 3D

- Flare ribbons = footprint of the coronal current layer/HFT
- Slipping reconnection forms flare loops/flux rope envelope

ERUPTIVE FLARES: MODEL PREDICTION & DISCREPANCIES

Energetics of flares (CME kinetic energy)

Model prediction: kinetic enercy ~ 5-10% of flare energy Emslie: kinetic energy ~ same or 3x bolometric energy

Why such discrepancies?

Observational biases?

Numerical problems in ALL codes?

ERUPTIVE FLARES: MODEL PREDICTION & FUTUR CONFIRMATION?

QSL reconnection:

