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Abstract. Numerical simulations of collisionless supercritical quasi-perpendicular shocks
suggest that the upstream whistlers may be generated near the shock by the reflected protons
which gyrate back to the shock. We investigate in detail results of hybrid simulations and a
linear theory for a gyrotropic gyrating beam in a Maxwellian plasma, and we compare their
outcomes. We find good agreement between the linear theory and the simulations. We com-
pare these theoretical issues with observations, and we discuss the results. We also discuss di-
mensionality effects on the simulations of upstream whistlers. The investigation of lower Mach
shocks leads us to a condition for the existence of a so-called shock rippling.

1. Introduction

Upstream whistlers are often found upstream of collisionless
shocks in interplanetary space. They were first observed by Rus-
sell et al. [1971] using data obtained from OGO 5 in the upstream
region of the Earth’s bow shock. A detailed study by Fairfield
[1974] indicated that the waves observed in this region and in the
frequency range 0.5-4 Hz are whistler modes propagating in an ex-
tended region upstream of the shock, obliquely with respect to the
ambient magnetic field. Later on, similar waves were discovered
upstream of other planetary shocks [Orlowski et al., 1990, 1992;
Orlowski and Russell, 1991], and it was proposed by Orlowski et al.
[1994] to call them upstream whistlers to distinguish them from the
“foot whistlers,” found in the immediate vicinity of the shock ramp.

The generation mechanism and source location of these up-
stream whistlers have not yet been clearly identified. Broadly
speaking, two possible scenarios have been proposed: the first one
is a generation by and within the shock itself, the second one is
a local generation upstream by particles reflected from the shock.
The first scenario was proposed by Fairfield [1974], who did not
suggest a definite generation mechanism. An objection was raised
against such a scenario: since the waves can be observed far up-
stream of the shock, they should be weakly damped during their
propagation from the source to the observer; however, studies by
Rodriguez and Gurnett [1975] and Greenstadt et al. [1981] sug-
gested that shock-generated whistlers were heavily damped in the
foot of the shock.

A theory for the local generation of whistler waves by
anisotropic or gyrophase-bunched beams of protons was developed
by Wong and Goldstein [1987, 1988]. However, the waves are ob-
served [Hoppe et al., 1982] even when such beams are not recorded.

Nonthermal electrons were also invoked by Sentman et al.
[1983] because upstream whistlers are observed when suprather-
mal electrons with large pitch angle [Feldman et al., 1983] are de-
tected. However, a recent study by Orlowski et al. [1995] indicates
that upstream of the Earth’s bow shock the observed electron distri-
bution function is stable against the generation of whistler waves;
therefore the waves should be damped in the upstream region in
agreement with the observations by Orlowski and Russell [1991],
who showed that the amplitudes decreased with increasing distance
from the shock.
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Orlowski et al. [1995] also pointed out that the damping scale
length of whistler waves can vary by an order of magnitude with
small changes in the form of the electron velocity distribution func-
tion so that the hypothesis of generation of upstream whistlers in
the shock layer can be reconciled with the fact that they are, at
times, observed far upstream.

Therefore the hypothesis that upstream whistlers are generated
in the vicinity of the shock ramp, suggested by the above mentioned
observations is again considered as a viable one.

What precisely is this generating mechanism? A variety of
cross-field drift or anisotropy-driven instabilities may arise within
the shock ramp. The favored ones are related to the electron dy-
namics in the shock ramp which is still poorly understood. For ex-
ample, loss cone distributions or nongyrotropic distributions may
become unstable for oblique whistler waves [Veltri and Zimbardo,
1993]. Electron beams may be also responsible for the generation
of oblique whistler waves [Tokar and Gurnett, 1985] within the
shock ramp.

On the other hand, the proton dynamics are now very well under-
stood. The shock is able to reflect up to about 20−30% of incident
protons. The analysis of the results of numerical simulations led
Krauss-Varban et al. [1995] and Hellinger et al. [1996] to propose
that the oblique whistlers may be generated by these gyrophase-
bunched reflected protons. The mechanism is the same as proposed
for the local upstream generation by Wong and Goldstein [1988],
except the whistlers are generated by the reflected protons gyrating
back toward the shock.

In this paper we want to extend the work by Hellinger et al.
[1996] (referred to as paper 1) and Wong and Goldstein [1988] and
to give a more quantitative comparison between the results of the
numerical simulations and the linear theory. In paper 1 we have
also mentioned that no Alfvén ion cyclotron (AIC) waves were ob-
served in slightly supercritical quasi-perpendicular shocks; we shall
revisit this problem and give a simple explanation for the absence
of AIC waves in these shocks.

Finally, we shall discuss the differences between numerical sim-
ulations in two and three space dimensions and compare our results
with those obtained by Krauss-Varban et al. [1995].

2. Simulations

2.1. Code

Our simulations were made using a three-dimensional (3-D) ver-
sion of a hybrid code written by Matthews [1994]. This code only
uses one computational pass through the particle data and allows
a field time substepping. These features make the code convenient
for 3-D simulations.
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Figure 1. Dispersion relations (top) ω(k) and (bottom) γ(k)
(bottom panel) for the whistler mode with θkB = 45 deg. Re-
sults of the linear theory are denoted by solid curves, results of
the simulation are denoted by asterisks.

Units of space and time are c/ωpi and Ωi, respectively, where c
is the speed of light, ωpi = {n0e

2/mpε0}1/2 is the upstream pro-
ton plasma frequency, and Ωi = eB0/mp is the upstream proton
gyrofrequency (n0 and B0 are the upstream density and magnitude
of the magnetic field, respectively, while e and mp are the proton
electric charge and mass, respectively; finally, ε0 and µ0 are the di-
electric and magnetic permeabilities of vacuum), respectively. The
spatial resolution is dx = dz = 0.125c/ωpi and dy = 0.25c/ωpi .
There are 15 particles per cell in the region upstream of the shock;
fields and moments are defined on a 3-D grid with dimensions
nx × ny × nz = 200 × 20 × 40, where x is the coordinate along
the shock normal direction. The time step for the particle advance
is dt = 0.05Ω−1

i , while the magnetic field B is advanced with a
smaller time step dtB = dt/20.

The shock is launched in the standard way by reflection of
a streaming plasma on an infinitely conducting wall located at
x = 25. The parameters of the simulation are plasma injection ve-
locity, v0 = 2vA, directed parallel to the x axis, angle between the
shock normal and the upstream magnetic field vector (in the copla-
narity plane xz), θBn = 80o, the proton and electron pressures
normalized to the upstream magnetic pressure, βp = βe = 0.5,
and resistivity, η = 10−3µ0v

2

A/Ωi (vA = B0/
√

µ0n0mp is the
upstream Alfvén speed).

2.2. Tests at High Frequencies

Since we want to study the generation of relatively high-
frequency whistler waves (about 20−40Ωi), we have to make sure
that the code gives results which are physically meaningful in this
high-frequency region.

We have therefore considered the propagation of small am-
plitude whistler waves in a Maxwellian plasma using a one-
dimensional (1-D) version of the code and compared with the
predictions of the linear theory [using the program WHAMP by
Rönmark, 1982].

Two points should be mentioned. First, the theoretical disper-
sion relation was calculated for the same βp as in the simulations
but with a small value of βe = 0.003 in order to suppress the elec-
tron kinetics.

The second point is that the damping rate due to the protons is
of the order 10−4Ωi and is negligible with respect to the resistive
damping rate γres given by

γres ' η

µ0

k2 (1)

Figure 2. Two dimensional (2-D) grey level plots (left) of the
compressional component Bz and (right) of the transverse com-
ponent Bx in the coplanarity plane for the shock with MA = 5.
Distances are in units of c/ωpi.

Figure 3. The 2-D grey level plots (left) of the compressional
magnetic component Bz and (right) of the transverse compo-
nent Bx in the coplanarity plane for the shock with MA = 3.3.
Distances are in units of c/ωpi.

for the value of the resistivity η used here. We have therefore com-
pared the damping rate obtained in the simulation with the resistive
one (equation (1)). A typical example of the results of the com-
parison is shown on Figure 1. On Figure 1 we have plotted the
frequency ω and damping rate γ obtained from the 1-D simulations
(asterisks) and the linear theory (solid curves) for oblique propa-
gation, θkB = 45 deg (θkB is the angle between the wave vector
k and the magnetic field B). One may see that even for the high
frequencies ∼ 30Ωi there is a very good agreement between the
simulation results and the linear theory. Thus we may conclude
that the code can be used safely to describe timescales as short as
(20 − 40Ωi)

−1 as long as it is justified to ignore electron kinetic
effects.

2.3. Results

With the parameters we used, we have observed the formation
of a slightly supercritical quasi-perpendicular shock with an Alfvén
Mach number MA ' 3.3 traveling in the direction of decreasing
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Figure 4. (left) The results of the linear theory, the dependence
of the maximum growth rate of the Alfvén ion cyclotron waves
on the proton temperature anisotropy. The horizontal dashed
line denotes γcr = Ωil, the vertical dashed line denotes the cor-
responding Acr ' 12.5. (right) The results of the 2D shock
simulations, the maximum of the shock temperature anisotropy
as a function of the Alfvén Mach number (asterisks).

x. Its overall properties are what one could expect in this regime
and are described in paper 1. We want to focus here on two partic-
ular points: the absence of Alfvén ion cyclotron (AIC) waves in the
shock ramp and the excitation of upstream whistlers.
2.3.1. Alfvén ion cyclotron waves

The Alfvén ion cyclotron (AIC) waves play an important role
in the relaxation of ion temperature anisotropies associated with
the quasi-perpendicular shocks [Gary et al., 1993]. The two-
dimensional (2-D) simulations show that in high Mach number
quasi-perpendicular shocks, AIC instability is active and causes a
significant “rippling” of the shock front [Winske and Quest, 1988;
Thomas and Brecht, 1986; McKean et al., 1995]. The AIC insta-
bility results from the large effective temperature anisotropy due
to the presence of reflected protons in the shock front [Burgess,
1987; Skopke et al., 1983]. The excited waves have compressional
magnetic and density fluctuations of the same order of magnitude
as that of the transverse ones, and their wave vector is parallel or
slightly oblique to the shock front with a wavelength of 3−5c/ωpi,
similar to but lower than those found in the linear theory of the AIC
instability in an homogeneous plasma [Winske and Quest, 1988].

Thomas and Brecht [1986] have studied the properties of quasi-
perpendicular shocks in a broad range of parameters, using a 2-D
hybrid code; in their results it can be seen that AIC waves are ex-
cited in the shock ramp with a significant amplitude only when the
Mach number is large enough.

For example, their case I, a shock with MA = 3.5 (βp = βe =
0.5), clearly shows no compressional fluctuations along the shock
front contrary to the case of higher Mach number shocks. The
transverse (to the shock normal) fluctuations appear only down-
stream behind the shock front.

We have obtained similar results. For example, Figures 2 and 3
illustrate the results of 2-D simulations for two supercritical shocks
with MA = 5 and MA = 3.3, respectively, (other parameters
are identical: θnB = 80 deg, βe = βp = 0.5 upstream, and
dx = dz = 0.5c/ωpi; the dimensions of the simulation box are
25c/ωpi×20c/ωpi; the simulation box is chosen to lie in the copla-
narity plane; and the results are shown at the time t = 12Ω−1

i ).
In Figures 2 and 3 we present 2-D grey level plots of the com-

pressional magnetic component Bz and a similar plot for one trans-
verse component Bx. The shock ramp is clearly rippled in the first
case and not rippled in the second. In this case, one can see the

development of standard AIC waves behind the shock front which
are transported with the flow farther downstream: the shock front
is clearly unaffected by their presence.

This difference between the low and high Mach number quasi-
perpendicular shocks may be explained in the following way.
The region where high-temperature anisotropies can be found is
bounded by the shock front on one side and the end of the shock
foot at the other side. Its thickness is typically d ∼ 0.3v0/Ωi

[Gedalin, 1996], if v0 is the upstream bulk velocity in the shock
frame. So the growth time tγ = 1/γ (γ is the growth rate of the
instability) of a wave should be shorter than the time tc = d/vc

needed by the plasma to cross the unstable region with a velocity
which may be estimated as vc ∼ (v0 + v1)/2, where v1 is the
downstream plasma bulk velocity in the shock frame (we neglect
the phase velocity of the mode). Using the Rankine-Hugoniot rela-
tion n0v0 = n1v1, where n1 is the downstream density, we find a
condition for the existence of AIC rippling of the shock front:

γ>γcr ' 1.6(1 +
n0

n1

)Ωi > Ωil (2)

where Ωil and Ωid are respectively the local and downstream gy-
rofrequencies, respectively,

Ωil ∼ 0.5(Ωi + Ωid) ∼ 2Ωi

Homogeneous linear theory predicts that there exist unstable
AIC waves with γ > Ωil in a bi-Maxwellian plasma with A =
T⊥/T|| > 12 (for βp|| = 0.5). The comparison of this simple the-
oretical condition and 2-D shock hybrid simulations is shown on
Figure 4. Figure 4 (left) shows how the maximum AIC growth
rate γmax depends on the (proton) temperature anisotropy ratio
T⊥/T||. The horizontal dashed line denotes the critical growth rate
γcr = Ωil and the vertical dashed line denotes the corresponding
Acr ' 12.5. On the right is the maximum, along the shock nor-
mal, of the temperature anisotropy measured in 2-D simulations as
a function of the Mach number (the temperatures were averaged
over planes parallel to shock front before computing the anisotropy
ratio).

It can be seen that low Mach number quasi-perpendicular shocks
have their maximum temperature anisotropy lower than the thresh-
old A∗

cr ∼ 15 and that the transition toward unstable AIC waves
takes place around MAIC

A ∼ 4, as observed in the numerical simu-
lations. The critical maximum anisotropy A∗

cr found in the simula-
tion is in good agreement with the critical anisotropy Acr predicted
by the linear theory; the small difference is probably due to the un-
certainties in the estimates of the plasma parameters in the shock
front region.

Note that in the interval MA ∼ 4−5 the temperature anisotropy
ratio decreases, an effect which is simply related to the develop-
ment of AIC ripples on the shock front. Indeed, the region of high
anisotropy is also rippled, and an average along planes perpendic-
ular to the overall shock normal mixes regions of low and high
anisotropy, resulting in a lower temperature anisotropy.

We have shown that below some critical Mach number MAIC

A
there is no important AIC wave activity in the shock front. The
supercritical quasi-perpendicular shock waves with Mach numbers
below MAIC

A are an intermediate case between the highly super-
critical [McKean et al., 1995] and subcritical [McKean et al., 1996]
shocks.

In the 3-D simulation which we shall discuss below, where
MA ' 3.3 < MAIC

A , no significant level of AIC waves in the
shock front is to be expected in agreement with the simulation re-
sults.
2.3.2. Upstream whistlers

As discussed in paper 1, we see a right-handed mode which
appears to belong to the whistler branch of the fast magnetosonic
mode. This mode is generated somewhere near the shock and prop-
agates upstream, obliquely both to the magnetic field and to the
shock normal (the angle between the wave vector and the mean
magnetic field is θkB ' 131 deg, between the wave vector and
the shock normal is θkn ' 51 deg, and between the wave vec-
tor and the coplanarity plane is θkc ' 56 deg). Its wavelength is
λ ' c/ωpi, and its frequency is ω ' 27Ωi.
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Figure 5. (left) and (middle) The dispersion properties
ω(k, θkB) of the three branches (solid curves) in the gyrat-
ing beam - plasma system. The value ω as function of k for
θkB = 45 deg is shown (left) and the ω as function of θkB for
k = 7ωpi/c is shown (middle). For comparison, we plot also
the Maxwellian whistlers dispersion relation (dashed curve) and
the resonance condition ω = k · vb (dot-dashed curve). (right)
The 2-D contour plot of the growth rate γ(k, θkB) for the inter-
mediate branch (note that the negative values of γ are dotted).

3. Comparison With a Linear Theory

In paper 1 we suggested that the wave mode observed in the
simulation was generated by the reflected protons gyrating back to
the shock, on the basis that its properties were comparable to those
expected from the linear theory and that it is resonant with the pop-
ulation of reflected particles. In this section we want to compare
quantitatively the predictions of the linear theory with the results
of 3-D simulations. We shall do the comparison in three steps:
In the first part we shall study the general dispersion properties of
the beam-plasma system. We shall also regard the influence of the
plasma and beam parameters on the instability; this study will be
useful for later discussions. In the second part we shall test the
prediction of the instability by means of a 1-D hybrid simulation.
Finally, in the third part we shall compare the predictions of the
linear theory with the results of the 3-D shock simulation. We shall
also compare the quasi-linear behavior of the instability in the 1-D
and 3-D simulations.

3.1. Properties of the Instability for a Gyrating

Beam

The generation of obliquely propagating whistler waves by a
proton beam instability in the context of collisionless shock physics
has been considered by a number of authors [e.g., Wong and Gold-
stein, 1988, and references therein]. We have adopted the approach
of Wong and Goldstein [1988] and made a thorough investigation
of the stability of a gyrating gyrotropic proton beam with a bi-
Maxwellian distribution function

fb =
nb√

π
3
v2

th⊥bvth||b

× (3)

exp(− (vx − v0⊥b)
2

v2

th⊥b

− v2
y

v2

th⊥b

− (vz − v0||b)
2

v2

th||b

)

drifting with a velocity v0b = (v0⊥b, 0, v0||b) with respect to a
Maxwellian plasma in the presence of an unperturbed magnetic
field B0 = (0, 0, B0) directed along the z axis.

We have limited ourselves to the high-frequency range ω >>
Ωb, where the beam gyration may be neglected. We have also as-
sumed charge neutrality ne = nb + np, where np, ne, and nb are

Figure 6. (left) The growth rate as function of k for θkB =
45 deg for three different values of βb: βb = 1.0 (dotted curve),
βb = 0.5 (solid curve), and βb = 0.1 (dashed curve). (right)
The growth rate as function of k for θkB = 45 deg for three
different values of βe: βe = 1.0 (dotted curve), βe = 0.5 (solid
curve), and βe = 0.1 (dashed curve).

Figure 7. (left) The growth rate as function of k for θkB =
45 deg for three different values of vb: vb = 5 (dotted curve),
vb = 7.07 (solid curve), and vb = 10 (dashed curve). (right)
The growth rate as function of k for θkB = 45 deg for three
different values of nb/ne: nb/ne = 0.05 (dashed curve),
nb/ne = 0.1 (solid curve), and nb/ne = 0.2 (dotted curve).

the background proton density, the total electron density, and the
proton beam density, respectively. The following parameters have
been used (if not explicitly stated otherwise): ratio of the electron
plasma frequency to the electron gyrofrequency, ωpe/Ωe = 200;
ratio of the beam density to the electron density, nb/ne = 0.1; par-
allel proton beam temperature Tb|| = Tp equal to the background
proton temperature Tp; and beam velocity, vb = 7.07vA , where
the Alfvén speed vA = B0/

√
µ0mpne is calculated with the back-

ground magnetic field magnitude B0 and the total electron density
ne. The details of the analysis can be found in the appendix; here
we shall only present the main results.

With these parameters and when the beam velocity is parallel
to the magnetic field, the (real) frequency for a given wave vector
and direction of propagation remains close to the value obtained
for a purely Maxwellian plasma. However, when the beam veloc-
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Figure 8. (left) The dispersion relation ω(k) for θkB = 45 deg:
the solid curve denotes the result of the linear theory. The gray
level plot shows the result of the real frequency in the simula-
tion. (right) The growth rate γ(k) for θkB = 45 deg: the solid
curve denotes the result of the linear theory, the asterisks denote
the results of the simulation.

ity acquires an important component perpendicular to the magnetic
field, the dispersion relation is strongly modified, and there are now
three branches of solution. This is illustrated in Figure 5 for a
strictly gyrating (vb|| = 0) beam with vb⊥ = 7.07vA . The left
and middle graphs display the behavior of the frequency ω(k, θkB)
for the three branches (solid curves), the first one as function of k
at a given angle θkB = 45 deg of propagation with respect to the
magnetic field, and the second one as a function of θkB at a given
k = |k| = 7ωpi/c.

For comparison, the whistler dispersion relation in the Maxwel-
lian plasma without the beam is shown by a dashed curve and the
resonance relation ω = k · vb by a dot-dashed curve. It can be
seen that two of the branches are basically beam modes shifted by
∼ ±kvthb and interacting with the whistler mode which is sup-
ported by the background plasma. The lower and the higher branch
are not found to be unstable. On the other hand, the intermediate
one becomes unstable for a wide region of k vectors. This is il-
lustrated on the right in Figure 5, where we show a contour plot of
the growth rate γ(k, θkB); the maximum growth rate γ ' 2.5Ωi

is reached for k ' 6.5ωpi/c and θkB ' 45 deg. This instabil-
ity is resonant as may be seen from the left and middle graphs. A
somewhat similar behavior of the interaction between the beam and
plasma mode is reported in the case of the electron beam-plasma in-
stability [Dum, 1989]. The three modes are elliptically polarized in
the right-handed sense; the degree of ellipticity is close to 1 as soon
as the corresponding branch lies close to the Maxwellian whistler
dispersion relation (this is the case of the intermediate branch in the
vicinity of the maximum of instability).

It is interesting to know how the properties of the instability de-
pend on the various parameters of the plasma: temperatures of the
various components, relative beam density, and beam velocity. The
temperature of the background protons has little influence on the
dispersion relation as long as the beam speed is much larger than
the proton thermal speed. The instability is rather insensitive to the
electron temperature; on the other hand, the growth rate depends
significantly on the beam parameters: temperature, velocity, and
density. This is shown in Figures 6 and 7 which display results
obtained for a given angle of propagation θkB = 45 deg and with
Tb⊥ = Tb|| ≡ Tb and nb/ne = 0.1 and a strictly gyrating beam,
vb|| = 0 and vb⊥ = 7.07vA . In Figure 6 the growth rate is plotted
as a function of k either for βe = 0.5 and three different values
of βb (βb ≡ 2µ0kBneTb/B2

0 ) (left) or for three values of βe and

Figure 9. (left) The 2-D gray level plot of the reduced distribu-
tion function of the beam f∗

b (vx, vy). (right) Comparison of the
profile of the reduced distribution function of the beam f∗∗

b (vx)
(solid curve) with the profile of the drifting Maxwellian distri-
bution function (dashed curve).

Figure 10. (left) The 2-D contour plot of the growth rate
γ(k, θkb) which results from the linear theory. (right) The dis-
persion relation of the real frequency ω(k) for θkB = 131 deg
obtained from the linear theory for the mode in the presence of
the beam (solid curve) and for the Maxwellian whistler mode
(dashed curve). Small rectangle gives the parameters of the
mode observed in the simulation.

βb = 0.5 (right). Clearly, γ is almost independent of βe, while it
depends strongly on βb.

Similarly, the dependence on the beam velocity and the beam
density is illustrated in Figure 7, based on calculations using βe =
βb = βp = 0.5, vb|| = 0, vb⊥ = vb. On the left the growth
rate as a function of k for three different beam velocities vb and
nb/ne = 0.1 is shown, while the same function for vb = 7.07
and three different values of nb/ne are shown on the right. Note
that when changing the perpendicular velocity of the beam as on
the left in Figure 7, the angle of propagation θkBmax correspond-
ing to the maximum growth rate is shifted by a relatively small
amount of about 5 deg−10 deg. As a result, the plotted relation
γ(k, θkB = 45 deg) is shifted in k with respect to the relation
γ(k, θkB = θkBmax), but the maximum growth rates for the both
relations are almost the same.
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3.2. 1-D Hybrid Simulation of the Relaxation of the

Instability

To complement the linear study just described, we have per-
formed a 1-D, periodic, hybrid simulation for the same physical
conditions. Such a numerical study will be useful for two main
reasons: First, the simulations do not rely on any condition on the
frequency, and therefore their results may be used to check up the
prediction of the linear theory which is valid for ω >> Ωb. Sec-
ond, the simulations are self-consistent and give a correct behavior
of the system during the quasi-linear stage, and we may compare
the quasi-linear properties of the 1-D homogeneous simulation and
the shock simulation.

The simulation box is chosen to lie along the x axis; the initial
magnetic field is in the xz plane and makes an angle θxB = θkB =
45 deg with the x axis. The spatial resolution is dx = 0.08c/ωpi ,
the number of cells is Nx = 512, so that the box length is
X = 40.96c/ωpi . We have used a time step of dt = 0.001 (with
a substepping dtf = dt/20 for the advance of the magnetic field).
The initial state of the plasma consists of two Maxwellian popula-
tions of protons: background protons with a density np = 0.9 and
a beam with a density nb = 0.1. The initial velocity of the beam
vb = 7.07vA points out of the xz plane, and the simulation was
performed in the electron rest frame.

As time goes on, the bulk velocity of the beam particles rotates
around the magnetic field; we shall present results obtained dur-
ing a period when this velocity was in the vicinity of the xz plane.
The growth rates of the modes excited in the simulation have been
determined by a nonlinear fit of the time evolution of the Fourier
amplitudes with damped sinusoids. Only values obtained when the
correlation coefficient was greater than 0.75 are displayed. The re-
sults are shown in Figure 8, where a grey level plot denotes the
(real) frequencies on the left and asterisks denote the growth rates
on the right; these values were determined as described just above.
Solid curves are the results of the linear theory. One can see that
both real frequencies and growth rates obtained from the simula-
tion are close to those predicted from the linear theory, except for
small wave vectors for reasons which we shall discuss below.

The simulation shows clear evidence of quasi-linear effects.
During its gyration toward the xz plane the beam excites a wide
spectrum of k modes. These waves decelerate the resonant beam
protons. This phenomenon can be seen in Figure 9. The gray level
plot of the reduced (integrated over vz) distribution function for the
beam f∗

b (vx, vy) is shown on the left; the profile of the reduced (in-
tegrated over vy and vz) distribution function for the beam f∗∗

b as a
function of vx (solid curve) is shown on the right. For comparison,
we plot a corresponding Maxwellian distribution function (dashed
curve). The beam distribution function is clearly not Maxwellian.
A fraction of the resonant particles have been slowed down, and the
region in velocity space where the slope of the distribution function
is positive has become wider for lower velocities, and therefore
lower k vector modes are exited since k · v ∼ ω ∼ k2 for whistler
waves. This phenomenon explains the presence of unstable modes
of low k vectors which are not predicted by the linear theory (see
Figure 8).

3.3. Comparison With the 3-D Simulation

In Figure 10 we compare the 3-D simulation results with those
of the (homogeneous) linear theory. The contour plot of the growth
rate (negative values are dotted) as a function of the magnitude k
of the wave vector and of the angle θkB between this wave vec-
tor and the magnetic field is shown on the left. These growth
rates result from the linear theory for values which are close to the
observed ones in the shock simulation namely, the beam velocity
vb = 4.7, the beam density dnb/dne = 0.1, background proton
beta βp = 0.5, the beam temperatures Tb|| = Tb⊥ = Tp (where Tp

is the temperature of background Maxwellian protons), the angle
between the magnetic field, and the beam velocity θvB = 96 deg.
The code does not include the electron kinetics, so we set βe ' 0.

The real frequency ω = ω(k) as a function of k using dispersion
relations calculated in the plasma upstream of the shock is shown
on the right. The solid curve displays the dispersion relation in the

Figure 11. The 2-D gray level plots of the reduced distribu-
tion function f(vx, vy) in the shock foot: (a) the distribution
function when the whistler mode is present and (b) the distribu-
tion function when the whistler mode is not present because of
a coarser resolution.

Figure 12. (top) The density profile of the shock as a reference
for Figures 12a–12d. Figures 12a–12d display the profile of the
reduced distribution function f(vk) of protons at different inter-
vals indicated on the density profile. The resonance condition
vk = ω/k is denoted by a vertical line. Velocities are given in
units of vA; f is given in arbitrary units.

presence of the beam, the dashed curve displays the dispersion re-
lation in the Maxwellian plasma. The small rectangle gives the pa-
rameters of the mode observed in the simulation. Figure 10 shows
a very good agreement of the simulation results and the linear the-
ory. The mode observed in the simulation falls within the unstable
domain as estimated from the linear theory. The fact that it does not
correspond to the maximum growth rate may be simply explained
by the fact that the dimensions of the simulation domain (which are
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Figure 13. (top) The density profile of the shock (where some
reflected protons have been removed) as a reference for Fig-
ures 13a–13d. Figures 13a–13d display the profile of the re-
duced distribution function f(vk) of protons at different inter-
vals indicated on the density profile. The resonance condition
vk = ω/k is denoted by a vertical line. Velocities are given in
units of vA; f is given in arbitrary units.

quite small in the y direction) and the finite spatial resolution do not
allow the excitation of the mode which is predicted to be the most
unstable one by the linear theory. An influence of the inhomogene-
ity of the beam distribution function and a magnetic field cannot
be excluded. Nevertheless, the agreement with the linear theory is
reasonably good.

To illustrate the interaction of the particles with the whistler wa-
ves, we compare the results of the present simulation with those
of another simulation using the same parameters but with a coarser
spatial resolution (dx = 0.25c/ωpi and dy = dz = 0.5c/ωpi).
The results of both the simulations at the same time t = 10Ω−1

are shown in Figure 11 in the form of gray level plots of the pro-
ton velocity distribution function measured in the shock foot. The
distribution obtained in the resolved simulation is displayed in Fig-
ure 11a and that obtained in the unresolved simulation is displayed
in Figure 11b. In the latter case, the coarse resolution does not
permit the whistlers to appear; thus Figure 11b can be considered
as a reference distribution function in the absence of wave particle
interactions. Therefore we can see by comparing Figures 11a and
11b that the particles are decelerated and diffused in the velocity
space in much the same way as we observed in the homogeneous
1-D hybrid simulation (see section on 1-D hybrid simulation of the
relaxation of the instability and Figure 9).

4. Region of Generation

If we accept that the mode is generated by a resonant beam like
instability by reflected protons and that the growth rate is larger
than the gyration frequency, we may find out the region of genera-
tion by looking at the location where the distribution function has
a positive slope in the resonant part of velocity space. Figure 12
shows a density profile of the shock to serve as a reference for the
shock profile and 1-D velocity distribution functions f(vk) in dif-
ferent locations with respect to the shock ramp. The velocity vk

is the projection of the velocity on the wave vector vk = v · k/k,
and the distribution function f(vk) is obtained by integrating the
full velocity distribution function F (vk,v⊥) over the 2-D velocity
space of v⊥ perpendicular to k, f(vk) =

∫

F (vk,v⊥)d2
v⊥. The

full distribution function was obtained by doing the standard statis-
tics on the particles contained in the slices of the computational
domain indicated by the intervals shown on the density profile.

The resonance condition k · v = kvk = ω is denoted by a ver-
tical line. One may see that within the intervals a and b (i.e., in
the foot of the shock) the resonant condition falls into the region of
positive slope, whereas farther in the shock front (intervals c and d)
this is not the case. This suggests that the whistler mode is gener-
ated within the foot region (with thickness about 1c/ωpi).

This argument is strengthened by the results of the numerical
experiment already mentioned in paper 1, and which consists in
removing from the simulation all reflected particles upstream of
some moving (escaping) boundary. When the escaping boundary
lies close to the shock ramp, the generation of the whistler is in-
hibited, while the whistlers reappeared when this boundary was far
enough from the shock ramp. The reason for the disappearance
of the waves may be clearly seen in Figure 13 (same format as
Figure 12), which is representative of a time when the escaping
boundary is close to the shock ramp. The resonance condition in
this case never falls into the interval of positive slope of the re-
duced distribution function (except the interval a where the density
of the reflected protons is very low) and explains the absence of the
whistler wave mode.

5. Dimensionality Effects

Krauss-Varban et al. [1995] have used a 2-D full-particle code
with a relatively large ratio of proton to electron mass to simulate
a shock with θnB = 60 deg and MA = 5. They chose the simu-
lation plane to be the coplanarity one and found upstream whistler
waves similar to those observed in our simulations.

It is thus interesting to try and answer the following question:
what would happen if we restricted our simulation box to two di-
mensions, namely, to the coplanarity plane, as in their simulation.
In this case the whistler mode still exists (with a lower amplitude)
but now is of course forced to remain within the coplanarity plane.

We may conclude that the velocity distribution function in the
foot is unstable for waves propagating within a wide range of an-
gles with respect to the coplanarity plane because of the compli-
cated velocity distribution function in the foot (see Figuri 11). A
well-resolved, large-scale 3-D code is required if one wants to keep
the most unstable modes. We expect that the most unstable modes
in the case of Krauss-Varban et al. [1995] are out of the coplanarity
plane and therefore out of the simulation plane, but the angle be-
tween the most unstable modes and the coplanarity plane can be
small (as we shall discuss in next session).

This comparison suggests also that the electron dynamics, taken
into account by Krauss-Varban et al. [1995], does not generally
damp out the instability. This is in agreement with the results of the
linear theory, which show that the instability is not sensitive to the
electron temperature (see section on the properties of the instability
for a gyrating beam and Figure 6), and it may also be regarded as a
justification of the use of the hybrid code which allowed us to go to
three dimensions (although a larger computational domain would
be welcome).

6. Comparison With Observations

6.1. Simulation

The whistler mode found in the simulation possesses many
properties of the observed upstream whistlers: frequencies within
the range 20 − 40Ωi , and right-handed polarization. They prop-
agate upstream from the shock obliquely to the magnetic field at
angles from 10 deg to 50 deg [Fairfield, 1974; Orlowski and Rus-
sell, 1991].
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However, the wave vector of the simulation whistlers makes a
finite angle, θkc ' 56 deg, with the coplanarity plane and with the
shock normal, θkn ' 51 deg, although Orlowski et al. [1994], in
a recent study of upstream whistlers at the Venus bowshock found
that the observed wave vectors are distributed mostly in the copla-
narity plane and usually within a small angle from the shock nor-
mal.

A first explanation is that, as explained above, because of the
limitations in the size of our computational domain, we did not al-
low for the most unstable mode; however, even in the linear theory
this most unstable mode is propagating fairly obliquely with re-
spect to either the coplanarity plane or the shock normal. A better
possible explanation is that we have considered here only a simple
but rather special case not very well represented in the data; in-
deed, the shock is close to being perpendicular. More typical shock
waves have higher Mach numbers and are more oblique. It is ex-
pected that for more oblique shocks, where the beam velocity has a
significant component along the magnetic field, the most unstable
wave vector will come closer to the coplanarity plane. Moreover,
for the propagation against the solar wind we should require the
normal component of the phase velocity to be greater then the bulk
upstream velocity. For higher Mach number shocks this condition
will inhibit propagation at high oblique angles to the shock normal
because such waves will be convected and have little time to grow.
So for more typical shocks the excited modes will have tendency
to become aligned with the shock normal in agreement with the
results of Orlowski et al. [1994]. These problems are beyond the
scope of the present paper and are under investigation.

6.2. Linear Theory

The linear theory of the gyrotropic gyrating beam in Maxwel-
lian plasma gives the results which are in good agreement with the
observations. Indeed, the intermediate mode is right-handed and al-
most circularly polarized within the unstable region, and it reaches
its maximum growth rate at oblique propagation with respect to the
background magnetic field. The mode is unstable within a wide
range of wave vectors which are compatible with the broadband
character of upstream whistlers [Orlowski et al., 1995]. The fre-
quencies found within the unstable region are comparable to the
observed ones (see, for example, Figure 5). These properties and
the relative insensitivity of the instability to the electron tempera-
ture make the instability a good candidate for the generation mech-
anism of upstream whistlers for a wide range of plasma parameters.

7. Conclusions

In this work we have substantiated the generation mechanism
of upstream whistlers near the shock proposed in paper 1 and pro-
posed independently by Krauss-Varban et al. [1995]. We have dis-
cussed the evidence from numerical simulations and linear theory
in favor of a scenario where the upstream whistlers are generated
by the reflected protons when they gyrate back to the shock; in this
region their distribution function presents a positive, unstable slope
in velocity space which is unstable for the excitation of whistler
waves. The removal of the reflected particles causes the disappear-
ance of the whistler modes because they are resonant everywhere
with protons which happen to belong to the stable part of the dis-
tribution function.

We have extended the comparison of the simulation results of
paper 1 with linear theory in an approximation which was proposed
by Wong and Goldstein [1988], with good agreement for the growth
rates and angles of propagation. The properties of the simulation
whistlers correspond to those of the upstream whistlers found in the
foreshock of planetary shocks except for the direction of propaga-
tion which lies at the boundary of the domain where those whistlers
are usually seen.

Finally, we have shown that slightly supercritical quasi-perpen-
dicular shocks do not present AIC shock front rippling, because
such an AIC mode has not enough time to reach a large amplitude
while is transported through the shock ramp.

Figure 14. The comparison of the exact dispersion relation
(equation A2) (dashed curve) and the approximated one (equa-
tion A1) (solid curve) for (left) the frequency ω(k) and (right)
the growth rate γ(k).

Appendix A: Appendix: Instability of a
Gyrating Nonmagnetized Ion Beam

The dispersion properties of a homogeneous plasma with a Max-
wellian proton and electron core and a beam of gyrating protons
may be described in the high-frequency range ω >> Ωi by the
dispersion tensor D = De + Dp + Db, where De and Dp are the
standard contributions of electrons and protons, respectively, with
a (drifting) bi-Maxwellian distribution function:

fα(v) =
nα√

π
3
v2

th⊥αvth||α

×

exp

(

− v2

⊥

v2

th⊥α

− (v|| − v0||α)2

v2

th||α

)

where α ∈ {e, p} denotes the particle species (electron, protons).
The magnetic field is parallel to the z axis, B0 = (0, 0, B0), and
the wave vector is chosen to lie in the xz plane k = (k⊥, 0, k||).
The nonmagnetized gyrating ion beam is presumed to have a drift-
ing bi-Maxwellian distribution with a velocity which lies in the xz
plane v0b = (v0⊥b, 0, v0||b)

fb =
nb√

π
3
v2

th⊥bvth||b

×

exp

(

− (vx − v0⊥b)
2

v2

th⊥b

− v2
y

v2

th⊥b

− (vz − v0||b)
2

v2

th||b

)

In the high-frequency range ω >> Ωb we may neglect the beam
gyration so that the beam contribution may be given as given by
Wong and Goldstein [1988]. The solution ω(k) of the dispersion
relation, given by

det(D) = 0 (A1)

is found numerically using standard methods.
Note that our definition of the Alfvén velocity uses the total elec-

tron density ne, which is at variance with the definition used by
Wong and Goldstein [1988] which is based on np. The calculation
is done in the frame where the parallel electron velocity is zero,
v0||e = 0, and v0||p = −nb/nev0||b.

As proposed by Wong and Goldstein [1988], the validity of the
approximation (and the correctness of the code) may be tested by
the comparison with the exact dispersion relation, which is known
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when the ion beam velocity is parallel to the magnetic field. For this
case and restricting ourselves to the wave vectors k parallel to the
ambient magnetic field, we have the following simple dispersion
relation:

k2c2

ω2
= 1 +

∑

α

ω2
pα

ω2
[Aα − 1 + (A2)

(ω − k||v0||α + Ωα)Aα − Ωα

k||vth||α
Z(

ω − k||v0||α + Ωα

k||vth||α
)]

where α ∈ {e, p, b} denotes the different species, ωpα is
the plasma frequency of the species α, Aα is the temperature
anisotropy Aα = v2

th⊥α/v2

th||α, and Z is the plasma function.
The result of the comparison for βe|| = 0.001 end βp|| = 0.5

is shown in Figure 14, which shows the frequency ω = ω(k)
(left) and the growth rate γ = γ(k) (right) calculated with the ap-
proximate equation (A1) (solid curve) and with the exact one (A2)
(dashed curve). The results for the unmagnetized beam are similar
to the exact calculations but are shifted in k vector space, because of
the presence of a term Ωb/(kvth||b) in the relation (A2). The real
frequencies are essentially the same in both cases. We may thus
conclude that the numerical resolution of the relation (A1) gives
satisfactory results at least for parallel propagation. The growth
rates and frequencies are in good agreement with the exact values,
but growth rates are shifted in k space as one replaces the cyclotron
resonance by the Landau resonance. One may expect this differ-
ence to be less pronounced for more oblique propagation. The dif-
ference is also smaller for higher beam temperatures [see Wong
and Goldstein, 1988, who have found a good agreement between
the two dispersion relations for βp||0 = 1 and Tb = Tp||].

We have also compared our results with those given by Wong
and Goldstein [1988] and found the same results when using the
same parameters. This is illustrated in Figure 15. Contour plots of
the growth rate for a gyrating beam v0||b = 0, v0⊥b = 7.07/

√
0.9

(we have a different definition of the Alfvén velocity), βe = βp =
1 are shown on the left. The dispersion relation ω = ω(θkB) (solid
curve) and γ = γ(θkB) (dashed curve) for k = 5.6/

√
0.9ωpi/c

(in logarithmic scale) are shown on the right. The results are the
same as given by Wong and Goldstein [1988, Figure 4].
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Figure 15. (left) The 2D contour plot of the growth rate
γ(k, θkB) (negative values of γ are dotted). (right) The pro-
files of the frequency ω(θkB) (solid curve) and the growth rate
γ(θkB) (dashed curve) for k = 5.6/

√
0.9ωpi/c (in logarithmic

scale). The same values as given by Wong and Goldstein [1988,
figure 4] are used.


