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ABSTRACT

Aims. We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from
hot stars.
Methods. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical
friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-
analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem.
Results. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we
reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.
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1. Introduction

Stellar winds from hot stars are often described using the so-
called CAK theory (Castor et al. 1975), including later improve-
ments for a finite stellar disk (Pauldrach et al. 1986; Friend
& Abbott 1986) and the ionisation stratification of the wind
(Abbott 1982). The radiative line force is here parameterised by
three constants only, k, α, and δ.

Although qualitative agreement between theory and obser-
vations was achieved, there were still discrepancies remaining,
namely the terminal velocity �∞ being too low and the mass-loss
rate Ṁ being too high (Abbott 1982; Friend & Abbott 1986).
Besides this, calculations did not reproduce the observed ionisa-
tion ratios (Pauldrach & Puls 1990). Further development of the
theory was focused mainly on the effect of multiline scattering,
magnetic field and rapidly rotating stars. As shown by Friend
& Castor (1983), if one includes the effect of multiple scatter-
ings in overlapping lines, the terminal velocity is higher than the
CAK value, while the mass-loss rate remains similar to the latter.
Furthermore, the inclusion of a magnetic field and the assump-
tion of high rotational velocity lead to a higher terminal velocity
and a higher mass-loss rate (Friend & MacGregor 1984).

The above problem with the ionisation structure can be re-
solved by including X-rays. X-rays are a common feature among
the O stars and can change the ionisation structure of the wind
significantly. As was first discussed by (Cassinelli & Olson
1979) and later by (Pauldrach & Puls 1990), the X-rays lead to
photoinisation via Auger processes and are necessary to explain
the presence of superionised ions O VI in observations.

Lucy & Solomon (1970) suggested a new hydrodynamic
instability of the radiative driving force. This so-called line-
driven instability can possibly explain observed variabilities of
stellar winds, such as variable X-ray emission, discrete ab-
sorption components, and the appearance of broad absorption
troughs in P Cygni line profiles (Prinja & Howarth 1986). The

contradictory results from the simplified linear stability analysis
of MacGregor et al. (1979) and Carlberg (1980), on one hand,
and Abbott (1980), on the other, were unified by Owocki &
Rybicki (1984, 1985) in the so-called bridging law. The first
time-dependent, numerical simulations of the instability were
undertaken by Owocki et al. (1988), who found that the wind
develops a train of strong reverse shocks. Their model was im-
proved by Feldmeier (1995), including the energy equation with-
out the approximation of gas isothermality to calculate the tem-
perature structure of the stellar wind. Adopting a simple for-
mulation for the line force, Dessart & Owocki (2005) extended
hydrodynamical instability simulations from one to two dimen-
sions (2D), to find the lateral coherence length of instability-
generated shells of dense gas in the wind.

The approximation of the one-component flow assumed in
the CAK model is acceptable for sufficiently dense winds from O
stars and hot B stars (Castor et al. 1976). The radiative line force
acts only on ions (termed “metals” in the following) that scatter
photons in numerous spectral lines. These ions share their mo-
mentum through Coulomb collisions with the passive part of the
plasma (protons). The dynamical effect of Coulomb collisions
on the plasma is described well by dynamical friction, which was
introduced by Chandrasekhar (1943) for the gravitational force
and later applied to electromagnetic forces by Spitzer (1956).

For thin winds from B near-main-sequence stars, however,
decoupling and a well-known plasma runaway effect can oc-
cur (Springmann & Pauldrach 1992). At low wind densities,
Coulomb interactions are weak, and the momentum transfer
from metals to protons becomes inefficient. As a result, the two
components decouple at a given radius. From this decoupling
radius on, metals are strongly accelerated by the radiative force,
whereas the passive plasma is decelerated by gravity.

It came as a surprise that Krtička & Kubát (2000) obtained
a different result from stationary hydrodynamic calculations.
They found a wind solution where the two components remain
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coupled, but undergo a sudden jump to a slow-acceleration
branch at a definite radius. This is analogous to what is found
for shallow (and overloaded) solutions (Feldmeier & Shlosman
2000). The issue has not been settled yet ever since Owocki &
Puls (2002) showed from linear stability analysis that the flow
should be disrupted by ion separation before reaching a slow-
acceleration solution. Krtička & Kubát (2001b) also found that
in a low-density wind, frictional heating may be important for
the energy balance of the whole wind and may increase the tem-
perature of the gas significantly.

An effect similar to ion decoupling was considered by Porter
& Skouza (1999), namely shock decoupling. In a low-density
wind that passes through a shock, the postshock gas remains at
high temperatures and in a highly ionised state because the gas is
too rarefied to cool radiatively (Krolik & Raymond 1985). In this
case the ions responsible for line driving are completely stripped
and are not accelerated further by the radiation field.

Another interesting idea in this context is the generation of
pulsating shells (Porter & Skouza 1999). If the wind decouples
at a radius where the flow speed is still lower than the escape
speed, the passive plasma falls back to the star, and the inter-
action with the outflow leads to pulsating shells. However, this
result is based only on a one-component model, with an artificial
turn-off of the radiative acceleration.

To analyse the possible occurrence of ion decoupling and
pulsating shells in thin stellar winds, it is necessary to develop a
suitable time-dependent, two-component hydrodynamics code.
In the present paper we describe our numerical method to sim-
ulate these outflows, and give basic results on thick and thin
winds.

2. Two-component winds

We restrict ourselves to a 1D spherically symmetric, isothermal,
quasineutral, two-component outflow consisting of metals that
scatter stellar photons in numerous spectral lines and a passive
plasma. The forces acting are gravity, dynamical friction, gas
pressure gradients, and, for only the line-scattering ions, the ra-
diative line force. The continuity equations are

∂ρp

∂t
+

1
r2

∂(r2ρp�p)

∂r
= 0, (1a)

∂ρi

∂t
+

1
r2

∂(r2ρi�i)
∂r

= 0, (1b)

and the Euler equations are

∂�p

∂t
+ �p
∂�p

∂r
+

1
ρp

∂pp

∂r
=

Rpi

ρp
− geff , (2a)

∂�i
∂t
+ �i
∂�i
∂r
+

1
ρi

∂pi

∂r
= gi

rad − geff − Rpi

ρi
· (2b)

Here, ρi, �i, and pi are the density, velocity, and pressure of the
metals, and ρp, �p, and pp are the density, velocity, and pressure
of the passive plasma. The effective gravitational acceleration
is geff = −GM∗(1 − Γe)/r2, with gravitational constant G and
Eddington factor Γe. The frictional force Rpi between metals and
passive plasma is described below (see Eq. (8)). The above sys-
tem is closed by the equations of state,

pp =

√
kT/mpρp, (3a)

pi =
√

kT/miρi. (3b)

The assumption of wind isothermality becomes questionable in
the presence of strong frictional heating, and we aim to include
the energy equation in future work.

2.1. Radiative acceleration

We write the radiative acceleration in the form (Krtička & Kubát
2000, Eq. (3))

gi
rad(r) =

(ησe)1−α

4π�αth

L∗
r2

k

(
1
ρi

∂�i
∂r

)α
fion ffin, (4)

with CAK force multipliers k, α, δ. Here, L∗ is the luminosity of
the star, �th the thermal velocity of ions, and σ ≈ 0.33 cm2 g−1

the Thomson opacity due to scattering on electrons.
The radiative acceleration due to line scattering only acts on

metal ions, but the CAK force multipliers k, α, δ were calculated
for a one-component plasma. We account for this by a scaling
factor η to the radiative force. The value η = 0.0127 calculated
by Krtička & Kubát (2000) for solar metallicities is adopted here.

The finite disk correction factor ffin is given by (Castor et al.
1975)

ffin(r) =
(1 + σ)α+1 − (1 + σµ2∗)
σ(σ + 1)α(1 − µ2∗)(α + 1)

, (5)

where µ∗ =
√

1 − (R∗/r)2 (with stellar radius R∗), and σ is given
by (Castor 1974):

σ =
r
�i

∂�i
∂r
− 1. (6)

Finally, fion is a correction for the ionisation state of the stellar
wind (Abbott 1982),

fion(r) =

(
10−11[cm3] ne

W(r)

)δ
, (7)

where W(r) = 1
2 (1 − √

1 − (R∗/r)2) is the geometrical dilution
factor. Due to the assumption of quasineutrality, the number den-
sity of electrons ne roughly matches the number density of the
passive plasma. Thus, we use ne = np in fion. This correction fac-
tor does not have a significant influence on the wind dynamics
(Abbott 1982).

2.2. Friction terms

The passive plasma and absorbing ions interact via Coulomb col-
lisions, which are described by a frictional force Rpi per volume
(Springmann & Pauldrach 1992),

Rpi = npnikpiG(xpi) , (8)

where np and ni are the number densities of the passive plasma
and absorbing ions, respectively, and the frictional coefficient kpi
is given by

kpi =
4π lnΛZ2

pZ2
i e4

kBT

�i − �p
|�i − �p| · (9)

Here, Zie and Zpe are the ion and passive plasma charges,
respectively. The Coulomb logarithm lnΛ is defined as

lnΛ = ln

⎡⎢⎢⎢⎢⎢⎣24π√
n

(
kBT
4πe2

)1.5⎤⎥⎥⎥⎥⎥⎦, (10)
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with Boltzmann constant kB, total number density n, and
wind temperature T . The Chandrasekhar function G(xpi)
(Chandrasekhar 1943; Spitzer 1956) in Eq. (8) is given in terms
of the error function Φ(xpi) by (Spitzer 1956)

G(xpi) =
Φ(xpi)

2x2
pi

−
exp (−x2

pi)

xpi
√
π
· (11)

This function depends on xpi, the ion separation drift speed rela-
tive to the passive plasma, scaled to the mass-weighted thermal
speed (Springmann & Pauldrach 1992)

xpi =
|�i − �p|

�th
√

1 + Ai/Ap

, (12)

where Ai and Ap represent the mean atomic mass of ions and
passive plasma in atomic units.

3. Method of solution

To solve the four hydrodynamic equations we use a hydro-
dynamics code developed by Feldmeier (1995) as a core. It
employs a standard Euler scheme and is suited for 1D, one-
component outflows. We extended this code to a two-component
version. Equations (1a) and (2) are discretised using an operator-
splitting, time-explicit, finite difference method on a staggered
mesh (see LeVeque et al. 1998, p. 131). We calculate advection
fluxes using van Leer’s monotonic interpolation (see van Leer
1982).

Krtička & Kubát (2000) discussed the circumstances under
which the radiative line acceleration is balanced by dynamical
friction and not by inertia. In this case, a decrease in dynamical
friction leads (counter-intuitively) to a decrease in the radiative
acceleration of the gas. We accelerate the gas by the sum of dy-
namical friction and radiative force, i.e. avoid operator-splitting
of these two force terms, in order to achieve a stable numerical
scheme. Similarly, for a barometric density stratification, one has
to apply the sum of the thermal pressure force and gravity at once
to avoid an unstable scheme.

As the time step, we use the minimum of the separate
Courant time steps for the two flow components. The wind is
characterised by two parameters, the mass-loss rate and terminal
speed. The latter scales with the escape speed, and the former is
given roughly by the CAK relation (Castor et al. 1975, Eq. (46))

ṀCAK =
4πGM

σref
e �th

α(1 − α)(1−α)/α(kΓe)1/α(1 − Γe)−(1−α)/α. (13)

To calculate the radiative force we use tabulated values of the
CAK parameters from Abbott (1982).

As initial conditions for the case of a well-coupled wind
we use, for the velocity of the both components in the sub-
sonic part, �(r) = 0.1a exp (Hr), where H is the scale height
and a the isothermal sound speed. In the supersonic part, we use
�(r) = a + 20 a r . Initial values for the density of both compo-
nents are calculated from Eqs. (1a) and (13).

For the case of a low-density wind (where poor coupling be-
tween the components may be expected), we artificially increase
the frictional coupling by increasing the average ion charge qi
and run the simulation (with the above initial conditions) until
a converged CAK one-component solution is achieved. This so-
lution then serves as initial conditions for both components in a
subsequent simulation with a realistic average ion charge.

Our boundary conditions are set according to the theory of
characteristics (Anderson 1995, pp. 303–307). For absorbing
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Fig. 1. The Chandrasekhar function: exact function G(xpi) according to
(11) (dashed line), and approximation GA(xpi) (solid line).

ions and passive plasma, we keep the densities ρp and ρi at the
inner boundary fixed to their initial values and set, at each time
step, the momentum densities ρi�i, ρp�p at the inner boundary to
their value at the first interior mesh point (zero-order extrapo-
lation). At the outer boundary, we extrapolate the mass and mo-
mentum densities of both components from the last interior mesh
point.

3.1. Discretisation of friction

The central issue of the present paper is the inclusion of the fric-
tional term (8). In the following we develop a simple, compu-
tationally effective, and accurate method for determining of the
velocity difference xpi at every time step, based on the frictional
term.

The equations for the momentum change of the passive
plasma and the absorbing ions due to the frictional term alone
are, from (2)

∂�r,i

∂t
= −CG(xpi)

ρp
, (14)

∂�r,p

∂t
=
CG(xpi)

ρi
, (15)

where the constant C is given by

C = − kpi

AiApm2
p
· (16)

Transforming the above differential equations into time-explicit
difference equations results in a system with high stiffness, since
we attempt to evolve a stellar wind on a relatively slow flow
time scale with respect to which the faster, frictional processes
maintain equilibrium almost instantaneously. As a consequence,
the numerical solution fails due to large oscillations at the wind
base. Therefore we set up the following semi-implicit scheme
for the frictional terms. Subtracting Eq. (15) from Eq. (14), we
obtain a differential equation for the drift velocity,

dxpi

dt
= − (ρi + ρp)C
�th

√
1 + Ai/Ap

G(xpi). (17)

In Eqs. (14) and (15) we now replace the partial time derivatives
by a total derivative following the idea of operator-splitting, i.e.,
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friction is now treated without reference to any “forthcoming”
hydrodynamic processes. The d/dt is not to be understood as a
Lagrange derivative. Upon formal integration,∫ xpi,1

xpi,0

dxpi

G(xpi)
= −

∫ t0+∆t

t0

C (ρi + ρp)

�th
√

1 + A
dt, (18)

where A denotes the ratio Ai/Ap, and xpi,0, resp. xpi,1, are the
drift velocities at times t0, resp. t0 + ∆t. We want to obtain an
analytical expression for the left hand side of Eq. (18). To this
end we use a three-interval fit to the Chandrasekhar function. For
low and high drift velocities we use the same approximations as
Owocki & Puls (2002),

G1(xpi) ≈ 2xpi

3
√
π

for xpi ≤ x1 (19)

and

G3(xpi) ≈ K

2x2
pi

for xpi ≥ x2. (20)

For values between x1 and x2, we approximate the
Chandrasekhar function using a quadratic function,

G2(xpi) ≈ a2x2
pi + b2xpi + c2, (21)

where the parameters a2, b2, c2 are evaluated from the condi-
tions G1(x1) = G2(x1), G2(xmax) = 0.214, and dG1(x1)/dx =
dG2(x1)/dx. Continuity of the derivative at x2 is not required,
because we have only a second-order polynomial approxima-
tion. The points x1, x2, and the scaling factor K were chosen
to achieve the best fit to the Chandrasekhar function (11). We
find, for x1 = 0.1 and x2 = 1.5, the values a2 = −0.2341,
b2 = 0.4532, c2 = −0.0053 and K = 0.74. This approximation
to the Chandrasekhar function is termed GA in the following and
is shown in Fig. 1.

For a well-coupled wind the difference between G and GA is
of minor importance, and both functions lead to essentially the
same wind solution. To show this, we use two different approxi-
mations GA, one being a global overestimate, the other a global
underestimate of G. In both cases, the code converged to almost
the same steady CAK solution.

Using the approximation GA, we obtain the velocity differ-
ence xpi as follows. At the dynamically most important part of
the Chandrasekhar function, i.e. its maximum (covered by G2),
integration of (18) leads to

ln
2a2xpi + b2 − Ξ
2a2xpi + b2 + Ξ

∣∣∣∣∣∣
xpi,1

xpi,0

= −C∆tΞ, (22)

where Ξ =
√

b2
2 − 4a2c2. With the help of the substitutions

q− = 2a2xpi,0 + b2 − Ξ, (23)

q+ = 2a2xpi,0 + b2 + Ξ, (24)

we can simplify the expression (22) and as final form of the
velocity difference obtain

xpi,1 =
1

2a2

⎡⎢⎢⎢⎢⎢⎣1 + q−
q+

exp (−C∆tΞ)

1 − q−
q+

exp (−C∆tΞ)
Ξ − b2

⎤⎥⎥⎥⎥⎥⎦ . (25)

For low drift velocities and using the approximation G1(xpi),
integration of (18) gives

xpi,1 = xpi,0 exp

(
− 2

3
√
π
C∆t

)
, (26)

and finally, for high drift velocities and using the approximation
G3(xpi),

xpi,1 =
3

√
x3

pi,0 −
3
2

KC∆t. (27)

The expressions (25)–(27) are used in our code to calculate
the change in drift velocity xpi due to friction during a hydro-
dynamic time step. This results in a highly improved stability
behaviour compared to direct, time-explicit differencing of the
friction terms and, for the first time, allows time-dependent sim-
ulations of multi-component winds.

Finally, we note that a commonly used approximation to the
Chandrasekhar function (Karlický et al. 2000)

GA(xpi) =
Kxpi

(x2
pi + �

2
th)3/2

, (28)

which covers the whole interval of drift speeds, results in inte-
grals we were not able to carry out analytically.

3.2. Time requirements

Since the two-component code is essentially a duplication of the
one-component code, and since the frictional force terms are
solved by analytic equations, i.e. at very small computational
cost, the cpu time for a simulation is comparable to the one-
component case, typically a few hours (for O(103) mesh points)
on a dedicated workstation. However, we chose a very small
Courant number of 0.05 (instead of typically 0.5) to bring the
inviscid Courant time step somewhat closer to the frictional time
step, in order to avoid changes too large in friction terms during
subsequent time steps, which could trigger instability.

4. Results of calculations

In the present paper, we considered essentially the same stars as
Krtička & Kubát (2000). More specifically, we apply our method
to the wind where a well-coupled solution is predicted (we refer
to this case as B0) and to the wind with possible decoupling
(referred to as B5). The corresponding stellar parameters are
given in Table 1. Details about these parameters are discussed
by Krtička & Kubát (2000).

To determine whether our model winds are well or poorly
coupled, we considered the parameter ΓL, which is the ratio of
the radiative force per mass acting on ions, gi

rad, to the gravita-
tional acceleration g Springmann & Pauldrach (1992),

ΓL =
ρi

ρi + ρp

gi
rad(r)

g
=
gCAK

rad

g
, (29)

and the parameter ΓB, which is the ratio of the CAK radiative
force gCAK

rad to gravity, for the case that dynamical friction reaches
a maximum,

ΓB =
gCAK

rad

∣∣∣
xpi=0.968

g
· (30)

Decoupling should occur, if

ΓB < ΓL. (31)

From Fig. 2, decoupling is expected in model B5 for r � 1.6 R∗.
Analytically, rd is determined by Springmann & Pauldrach
(1992),

rd = R∗

⎛⎜⎜⎜⎜⎜⎜⎝1 −
(

ṀCAKη kpiGmax

4π βR∗�3∞

)1/(3β−1)⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (32)
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Fig. 2. Left panel: plot of ΓB and ΓL as function of radius for the model B5. The curves cross at r ∼ 1.6 R∗. Right panel: dependence of the
decoupling radius rd on mass-loss rate Ṁ for the model B5. If the wind is denser, the decoupling radius is located farther away from the star.

Table 1. Parameters of wind models.

Star M Teff R∗ α k δ qi/qp

[M	] [K] [R	]
B0 90.0 28 500 37.0 0.590 0.170 0.09 3.0
B5 4.36 15 500 3.01 0.511 0.235 0.12 2.5

Table 2. Calculated values of �∞,p and ��∞,i in comparison with �CAK∞
from the one-component model, and derived values of the mass-loss
rate for absorbing ions, Ṁi, and for the passive plasma, Ṁp.

Star �∞,p ��∞,i �CAK
∞ Ṁi Ṁp

[km s−1] [km s−1] [km s−1] [Ṁ	 p. y.] [Ṁ	 p. y.]

B0 1600 1600 1600 6.6 × 10−8 4.4 × 10−6

B5 200 36 000 800 2.3 × 10−14 1.5 × 10−12

Note 1. The value of the passive plasma mass-loss rate roughly corre-
sponds to the CAK value.

where β is the beta-law parameter (see, e.g., Porter & Skouza
1999) and η has been introduced in (4).

4.1. Well coupled stellar wind

For this case we used the B0 model star from Krtička &
Kubát (2000). Our hydrodynamic simulation evolved to a steady
mCAK solution with the correct terminal speed �∞. Figure 3
shows the velocity law and the density stratification of the wind.
For comparison with Krtička & Kubát (2000) and the CAK pre-
dictions, we summarise the results of our calculation in Table 2.
As was expected, for the case of a well-coupled wind, the ve-
locities of both absorbing ions ��∞,i and passive plasma �∞,p are
roughly the same.

The agreement between our results and those obtained with
the one-component version of the code is very good, see Fig. 3.
There is also good agreement with the stationary calculation by
Krtička & Kubát (2000).

To test the sensitivity of the results to our approximation
of the Chandrasekhar function, we used different sets of pa-
rameters a2, b2, c2 and of points x1, x2 without the condition
of a best fit. For a2 = −0.176, b2 = 0.404, c2 = −0.001,
x1 = 0.15, and x2 = 1.85, fit GA lies everywhere above G,

with maximum deviation ≈30%, whereas for a2 = −0.224,
b2 = 0.438, c2 = −0.0033, x1 = 0.10, and x2 = 1.10,
the function GA lies everywhere below G, with maximum
deviation ≈50%. It turns out that, for the case of a well-
coupled wind, the detailed form of the approximation of the
Chandrasekhar function is not very important, since the steady-
state wind solutions are always fairly similar. On the other hand,
for a poorly coupled wind, a correct approximation is manda-
tory, since the frictional force determines the point where the
wind starts to decouple.

4.2. Low-density wind with decoupling

As a second model, we considered the B5 star from Krtička
& Kubát (2000). Their two-component model shows a solu-
tion with lower acceleration compared to the normal CAK so-
lution, but did not lead to decoupling. Results of our calcula-
tions are shown in Fig. 4. Compared to Krtička & Kubát (2000),
we changed the average ion charge to a slightly higher value
qi = 2.5 instead of qi = 2.0, as before. The aim of this was to
increase dynamical friction to prevent the appearance of pulsat-
ing shells. Namely, this higher value of qi shifts the decoupling
radius to a location where the escape velocity is lower than the
local speed of the passive plasma and, consequently, matter is
no longer gravitationally bound to the star. The more subtle case
when the matter is still gravitationally bound to the star will be
considered in a forthcoming paper.

We find that metal ions decouple from the passive plasma
and start to accelerate steeply at the decoupling radius, whereas
the passive plasma starts to decelerate at this location. The de-
coupling point from the simulation agrees roughly with the pre-
diction from expression (32), rd ≈ 1.6. (To derive this value,
we use the CAK value for �∞ from Table 2 and β = 0.8, which
is a good estimate for our model.) The present decoupling con-
tradicts the results of Krtička & Kubát (2000), who obtained a
shallow, coupled solution.

The quite unexpected result of Krtička & Kubát (2000) was
analysed by Owocki & Puls (2002), who performed a linear sta-
bility analysis of the time-dependent hydrodynamic equations
to derive perturbation growth rates and propagation speeds in a
two-component stellar wind. These authors found that the ion
decoupling instability persists for the Krtička & Kubát (2000)
shallow-wind solution, for long wavelength perturbations with
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high temporal growth rate ≈104�/R∗. It therefore seems that the
Krtička & Kubát (2000) solution is not a physically valid solu-
tion.

Owocki & Puls (2002) also show that for the solution ob-
tained by Krtička & Kubát (2000), the ion-decoupling instabil-
ity has a modest spatial growth rate, mainly due to the fast speed
of perturbation propagation, which only allows a slight ampli-
fication during the time needed to converge to the steady-state
solution. We may speculate that this is related to how Krtička &
Kubát (2000) indeed found convergence of the iteration scheme
applied to solve the steady-state equations to a shallow, one-
component solution.

As a test, we increased the value of the ion charge to a
rather unrealistic value of qi = 5, which artificially increases
the Coulomb coupling. For this case we obtained a stable, one-
component flow solution according to CAK.

After decoupling, the ion velocity gradient is so large that
the associated spectral lines from ions should be optically thin.
Because of this dramatic reduction of the Sobolev optical depth
in ions, the absorption of this highly accelerated material be-
comes weak and the signature of this material in the spectrum is
also weak. We must mention that the CAK radiative acceleration

given by Eq. (4) is overestimated. Babel (1996) showed that
inclusion of the shadowing effect by photospheric lines to radia-
tive acceleration calculation lowers its value significantly for B
stars with a low-density wind compared with the CAK model.
Thus, the high ion speeds from the above figure would not be
observed, and the observed wind speed is instead that of the pas-
sive plasma (Springmann & Pauldrach 1992).

5. Summary

We develop a method for time-dependent hydrodynamic sim-
ulations of multi-component stellar winds. To avoid resolving
the prohibitively short friction time scale (causing very stiff sys-
tem of equations) in our time-explicit scheme, we used a three-
interval fit to the Chandrasekhar function and solved the friction
terms (after operator-splitting) analytically. The stability and ac-
curacy of our method is demonstrated for a B0 model star with a
well-coupled wind, where our flow solution evolves to the well-
known steady mCAK solution.

For a B5 model star with a low-density wind, we find that
ion decoupling from the passive wind plasma occurs at a defi-
nite wind radius, instead of the transition to a shallow, coupled



V. Votruba et al.: A hydrodynamic scheme for two-component winds from hot stars 555

wind solution with small acceleration of both components, as
predicted by Krtička & Kubát (2000).

In the future, we will apply the code to a larger sample of
stars and study whether pulsating shells may originate in multi-
component stellar winds (Porter & Skouza 1999).
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