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Magnetic Reconnection in Flares
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Key reconnection models

Sweet-Parker reconnection (1957)
* Magnetic reconnection along an entire current

>’—< sheet of oppositely orientated field lines.

* Energy release rate is far slower than that
observed in flares.

Petschek reconnection (1964)

 Reconnection along a small fraction of the sheet,
>-/ with a configuration sustained by slow shocks.
T * Itis unclear whether such a configuration can be

sustained during a flare.
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Key reconnection models

Tearing mode / plasmoid instability

* If the sheet's length greatly exceeds its width, the
— — current sheet collapses/reconnects in certain locations
m to produce plasmoids or ‘'magnetic islands’.
Sy i, ~ —_ * These plasmoids continue to break down to

progressively smaller scales in a turbulent cascade.
* Island coalescence can also form larger islands.

How do we search for the role of instabilities in elusive current sheet regions?

* Current sheet regions have been observed off limb (e.g. PhD work French et al
2019,2020), but observations are rare.

* |Instead we can utilise the connection between current sheet and flare ribbons on disk.
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Ribbon Insights into Flare/Eruption Dynamics

((((( of CME flux rope

* Due to their magnetic connectivity, behaviour of
flare ribbon substructure must reflect processes in
the flaring current sheet region (Forbes & Lin 2000).

* Spectroscopic signatures suggestive of waves and/or '
turbulence (Brosius & Daw 2015) - consistent with -
the presence of either the tearing mode or Kelvin-
Helmholtz instability in the current sheet (Brannon
et al. 2015).

QSL footprints
&

current / flare ribbons
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Our Project Aim

//”{' Hot plasma

* Motivated by the method used in - SALotex
study of the terrestrial aurora, g
search for growth and timing of
key spatial scales along the flare
ribbons of a small, simple event.

 Compare observed parameters
with those predicted by instability
theory, and to the timing of
plasma turbulence and flare
onset.

Pikelner et al 1977







6th Dec 2016

— B-class flare -
IRIS SJI 1400 A, 1.7 s
cadence. .
Ribbons brightening :
cotemporally, followed

by the appearance of
loops in AIA 131.

BxA equal in both
ribbon over impulsive
phase.
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6t" Dec 2016 — Jeffrey et al 2018

* Non-thermal velocities
rise precedes ribbon

Non thermal velocity [km/s]

intensity enhancement. - :ZH‘M'? ”’_,112"9 "],(i) (ii) v (iii) | ('iv) , .(V) - '(vi) , ———4

* Suggests plasma o S e FL, r-sl W”
turbulence occurs before z o2 TEFTE™ SHEN

plasma heating and flare £ o 1

onset. T St = 10
* The ongoing presence of 0 e —— e

880 900 920 940 960 980 1000

turbulent signatures Time [s]
mean the driver of

turbulence persists for

longer.



Ribbon Tracking

* Track a central slit along the
evolving ribbons, plotting the
mean intensity around each
pixel along the centroid slit.

* Process the signal, and
calculate the spatial Fast-
Fourier Transform for each
time step.
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Slit position (Mm)
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Intensity & Power Evolution

We produce a stack plot of spatial FFTs at each time step.
We detect power growth across the spatial scale range, of up to 6 orders of magnitude.
Growth start-time appears to vary with spatial scale.
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Instability Growth Rate
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* We take a horizontal cross-section, to sample the time evolving power and
determine the rate/duration exponential growth at each specific spatial scale.

Spatial scale (Mm)
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Comparison of Ribbon Scales

e Conservation of flux — spatial processes will scale as flux tube grows
between reconnection site and ribbons.

* We can approximate the scale change by the square root of the
ribbon areas, allowing us to compare spatial processes in each ribbon.

NOT to scale

Magnetic
features

grow/shrink
with flux tube
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Exponential Growth Rate / Timings

 Compare rate and timing of exponential growth at each spatial scale.
* We detect evidence of cascade & inverse cascade from key wavelength.
* Matching patterns confirm common connection — the current sheet.
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Observables to Compare with Theory

NSO
National Solar Observatory

1. Exponential growth across all wavelengths, with a preferred spatial

scale.
2. Exponential growth rate of = 0.1-0.2 s,

Evidence of simultaneous cascade and inverse cascade.

= Suggestive of the tearing mode instability
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Instability Relationship with Turbulence

Non-thermal Velocity and Scale Growth

* Compare with non-thermal velocities S VA A L T A A T35
at slit location (Jeffrey et al 2018). | Exponentil growth end. 3
 Growth precedes non-thermal 17
velocity turbulence signatures by -
around 15 s. - 259
: : £ )
* Indicates that plasma turbulence is = A g
driven by tearing mode instability for = 0o
this confined event. 13
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Time, seconds after 10:37



Spatial scale (Mm)
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Spatial Scale Power Law

* In turbulence physics, the power law varies depending on the origin.

 Spatial scales reach an end state with a power law of 2.3, consistent
with simulations of tearing-induced turbulence (e.g. Dong et al 2018).
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CO n CI USiO n ADS link to paper — https://ui.adsabs.harvard.edu/abs/2021ApJ...922..117F/abstract

* Behaviour of spatial scales in flare ribbons consistent with the
presence of the tearing-mode instability in flaring current sheet.

* Timing suggests that tearing-mode instability triggers plasma
turbulence through a cascade and inverse cascade, producing a
spatial power law of 2.3.

* This sheds light on the complex interplay and feedback between
reconnection, turbulence and current sheet disruption at flare onset.

* Ongoing work expands this analysis to a larger IRIS flare list — and,
eventually, DKIST data (hopefully!).
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