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We study the ion-acoustic instability driven by a drift between
Maxwellian protons and electrons in a nonmagnetized plasmaus-
ing a Vlasov simulation with the realistic proton to electron mass
ratio. Simulation results for similar electron and proton temper-
atures are in good agreement with predictions. Namely, during
the linear and saturation phases the effective collision frequency
observed in the simulation is in quantitative agreement with the
quasi-linear predictions. However, previous estimates [Galeev and
Sagdeev, 1984;Labelle and Treumann, 1988] give the effective col-
lision frequency less than one tenth the simulated values. The theo-
retical and simulation results are in a partial agreement with the
simulation work byWatt et al. [2002] who used a non-realistic
mass ratio. After the saturation, the effective collision frequency
increases owing to the existence of backward-propagating ion-
acoustic waves. These waves result from induced scatteringon
protons and contribute to the anomalous transport of electrons.

1. Introduction

Current driven instabilities play an important role in the dissi-
pation and field-line merging in shocks and reconnection regions
in collisionless plasma. Recent works [Watt et al., 2002;Petkaki
et al., 2003] indicate that the ion-acoustic instability (in a non-
magnetized plasma) driven by a drift velocity between protons and
electrons is more important than was previously thought [Labelle
and Treumann, 1988]. Theoretical works [Galeev and Sagdeev,
1984;Labelle and Treumann, 1988] give an estimate for the second
order effects, the effective collision frequencyν = |dpe/dt|/pe

(wherepe is electron momentum) of the ion-acoustic instability in
the case of cold protons in an analogue form to the classical Spitzer
(electron-ion) collision frequency:

ν ∼ ωpe
We

nkBTe
, (1)

whereωpe is the electron plasma frequency,We is the fluctuating
ion-acoustic wave energy,n is the electron density,kB is Boltz-
mann constant, andTe is the electron temperature. Recently,Watt
et al. [2002] performed a set of Vlasov simulations and measured
the effective collision frequencyν in the simulations and found val-
ues two to three orders of magnitude higher than those predicted
by Equation (1). The simulation work byWatt et al. [2002] indi-
cates that Equation (1) is not applicable for a plasma with compa-
rable proton and electron temperatures. However, the interesting
and probably important results ofWatt et al. [2002] have a major
drawback: These simulations were done for an artificial proton to
electron mass ratiomp/me = 25.
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This paper addresses the question of the effective collision fre-
quency resulting from the ion-acoustic drift instability using a
Vlasov simulation with realistic mass ratiomp/me = 1836 for
these parameters: proton to electron temperature ratioTp/Te =
0.5 and drift velocity between electrons and protonsvd = 1.7vthe

(vthe is the electron thermal velocity). Note, that we have chosen
the same parameters as used byWatt et al. [2002]. The paper is
organized as follows: First, in section 2 we present an overview of
the linear and quasi-linear theory of ion-acoustic drift instability.
Then, in section 3 we describe the simulation method and in sec-
tion 4 we show results of the simulation and compare them withthe
theoretical predictions of section 2. Finally, in section 5we discuss
the results.

2. Linear and Quasi-linear Theory

We investigate the properties of a plasma with proton and elec-
tron populations with Maxwellian distribution functions,drifting
with respect to each other,fp = n/((2π)1/2vthp) exp(−v2/(2v2

thp)),
and fe = n/((2π)1/2vthe) exp(−(v − vd)

2/(2v2

the)), respec-
tively, wheren is the plasma density,vd is the drift velocity,vthp

is the proton thermal velocities.
For a drift velocityvd of the order of electron thermal velocity

vthe the system is unstable with respect to the ion-acoustic instabil-
ity. The growth of ion-acoustic waves leads in the second order to
slowing down of electronsdpe/dt < 0. The second order, quasi-
linear effect for a spectrumδE(k) of the ion-acoustic waves may
be given in a similar manner as for the lower-hybrid drift instability
[Davidson and Gladd, 1975] as:

dpe

dt
=

Z

dk|δE(k)|2 ω2

pe

kv2

the

ImξeZ(ξe) (2)

whereξe = (ω − kvd)/(
√

2kvthe) andZ is the plasma dispersion
function. The dispersion relationω = ω(k) is given in a standard
way

1 +
ω2

pe

k2v2

the

(1 + ξeZ(ξe)) +
ω2

pp

k2v2

thp

(1 + ξpZ(ξp)) = 0, (3)

whereωpp is the proton plasma frequency andξp = ω/(
√

2kvthp).
Equations (3) and (2) hold as long as the distribution functions of
electrons and protons are not far away from the initial Maxwellian
distributions.

3. Code

For integration of the one-dimensional Vlasov-Poisson system
of equations we use a slightly modified version [Mangeney et al.,
2002] of the Vlasov code developed byFijalkow [1999]. The code
has periodic boundary conditions and uses a Fourier transform for
the integration of the Poisson equation.
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The electron and proton distribution functionfe and fp are

discretized both in space and in velocities. The spatial grid has

Nx = 16,384 points and a resolution∆x = 1/8λD (λD is the De-

bye length). The electron velocity grid hasNve = 2000 points with

the resolution∆ve = 0.01vthe, and minimum and maximum ve-

locities arevemin = −8.3vthe andvemax = 11.7vthe. Similarly,

the proton velocity grid hasNvp = 1000 points with the resolu-

tion ∆vp = 0.02vthp and minimum and maximum velocities are

vpmin = −10vthp andvpmax = 10vthp.

4. Simulation Results

We initialize the simulation with a proton and electron

Maxwellian distribution with the physical parametersvd = 1.7vthe

and Tp/Te = 0.5 [cf. Watt et al., 2002]. For these parame-

ters Equation (3) predicts that the ion-acoustic branch is unsta-

ble for a wide range of wave vectors (from nearly zero to about

0.85/λD) with the maximum growth rateγmax = 0.00632ωpe , for

the wave vectorkmax = 0.51/λD and frequencyω = 0.0158ωpe.

Since the Vlasov simulations are essentially noiseless, weadd

to the initial distribution functionsfe and fp seed fluctuations

δfe and δfp that correspond to a linear response of the distri-

bution function to small, random phase fluctuating electricfield

E = δE
P

k exp(ikx − ωt + φ) of the ion-acoustic waves:

δfe,p = ∓ e

me,p
Re

X

k

E exp(ikx − ωt + φ(k))

i(kv − ω)

∂fe,p

∂v
(4)

whereω = ω(k) is a solution of the linear dispersion equation (3)

andφ = φ(k) is a random number from0 to 2π. We have chosen

δE = 5×10−7mevtheωpe/e and the initial spectrum of wave vec-

tors in Equation (4) to lie between0.04/λD and1/λD , i.e. mainly

in the unstable region.

We let the simulation evolve from the initial seed at timet = 0

to the final timet = 4000 (henceforth the time is given in units

of ω−1

pe ). During the simulation the electron and proton total mass
are conserved with a precision10−7 whereas the total energy is

conserved with a precision10−4. The evolution of the simulated

system may be divided into three phases: First, the waves grow

exponentially, then they saturate in a quasi-linear manner, and fi-

nally, after saturation the fluctuating electric field decreases through
wave-wave and wave-particle interactions.
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Figure 1. Evolution of (a) the fluctuating electric field energy
We, (b) the mean electron (solid) and proton (dashed) velocities
ve andvp, respectively, and (c) the effective collision frequency
ν: The solid curve shows the value measured in the simulation
via Equation (5), the dashed and dash-dotted denote the esti-
mates of Equations (6) and (7), respectively. The prediction
based on Equation (1) is shown by the dotted curve.

Figure 1 shows an evolution of different quantities during the
simulation: Figure 1a displays evolution of the density of fluc-
tuating electric field energyWe = 〈ǫ0δE2〉/(2nkBTe) where
〈δE2〉 =

PNx

i=1
δE2

i /Nx. Figure 1b shows evolution of electron
and proton mean velocitiesve andvp denoted by solid and dashed
curve, respectively. Finally, Figure 1c (solid curve) displays the
effective collision frequencyν measured in the simulation as

ν(t + δt/2) =
2

δt

p(t + δt) − p(t)

p(t + δt) + p(t)
(5)

where we useδt = 1. The dashed and dash-dotted curves show
theoretical prediction of the the effective collision frequency ν
calculated from the quasi-linear theory using the simulated spec-
trum δE(k) and linear dispersion predictions of Equation (3): The
dashed curve shows an estimate based on the discrete versionof
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Equation (2):

ν =
X

k

∆k|δE(k)|2ω2

pe

kv2

themenvd
ImξeZ(ξe) (6)

and the dash-dotted curve shows an estimate calculated using only
the strongest unstable mode from Equation (6) [cf.Davidson and
Gladd, 1975]:

ν =
|δE(kmax)|2ω2

pe

kmaxv2

themenvd
ImξeZ(ξe). (7)

The dotted curve shows the estimate of Equation (1).
Figure 1a shows clearly three phases: First an exponential

growth and a saturation about the timet = 2000, and, later on, a
decay of fluctuating wave energyWe. In the post-saturation phase
there are small oscillations in the fluctuating energyWe with a fre-
quencyωE = 0.05ωpe indicating possible electron trapping. An
estimation of the trapping frequency in a monochromatic wave with
wave vectork and an amplitudeδEk based on a lowest order ap-
proximation givesωb = (ek|δEk|/m)1/2. The strongest mode in
the simulation at the saturation level (t = 2000) would give a value
of ωb about ten times greater than the observed frequencyωE . The
oscillation of the fluctuating energyWe is probably due to other
effects.

Figure 1b displays the coupling between the protons and elec-
trons owing to the instability; electrons are decelerated whereas
protons are slightly accelerated. The electron deceleration takes
place all through the simulation, and is more pronounced fora
stronger fluctuating electric field as expected from the quasi-linear
theory (Equation (2)). This deceleration translates into the effective
collision frequencyν. Figure 1c shows that the observed frequency
ν is in a very good agreement with the theoretical predictionsof the
quasi-linear theory, especially during the first linear staget . 600
but around the saturation the simulated value is about one tenth the
quasi-linear prediction. On the other hand, Equation (1) predicts al-
most two orders of magnitude lower values fort . 600 and about
one order lower values around the saturation.

The saturation valueν ∼ 0.1ωpe is below the values predicted
by Equations (6) and (7) as one may expect: If only quasi-linear ef-
fects are present, the evolution of the averaged distribution function
f̄e(v) would be governed by a quasi-linear diffusion

∂f̄e

∂t
=

∂

∂v

„

D
∂f̄e

∂v

«

(8)

with the diffusion coefficientD, and the electron distribution func-
tion would eventually become stationary∂f̄e/∂t = 0 with a quasi-
linear plateau in the resonant region∂f̄e/∂v = 0. Consequently,
the effective collision frequencyν = |dpe/dt|/pe would even-
tually approach zero. However, in the simulationν continues to
increase from approximately0.1 to 0.2 even after the saturation
whereas the amplitude of electric fluctuation|δE|2 decreases. This
result indicates the presence of other effects playing important role
in the third, post-saturation phase. Let us now investigatethe evo-
lution of the simulated system in detail.

The simulated system is initially dominated by the unstableion-
acoustic waves, and, later on, back-propagating ion-acoustic waves
appear. There is a negligible wave energy in the Langmuir branch
since the initial seed (Equation (4)) was given to the unstable ion-
acoustic branch and the Vlasov simulations are essentiallynoise-
less. The simulated spectra are shown in Figure 2. Figure 2 dis-
plays the fluctuating electric fieldδE as a function ofω andk as
gray scale plots in two time intervals: (a) the initial, linear phase
(t = 0–800) and (b) the post-saturation phase (t = 2000–4000).
Overplotted curves denote predictions of the linear theory, Equa-

tion (3): Solid and dashed curves show the frequency and ten times
the growth rate, respectively.
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Figure 2. Gray scale plots of simulated spectra: Fluctuating
electric fieldδE as a function ofω andk during (a) initial linear
phase and (b) post-saturation phase. Overplotted curves denote
predictions of the linear theory: Solid and dashed curves show
the frequency and ten times the growth rate, respectively.

Figure 2a shows that initially the ion-acoustic waves are gener-
ated with the dispersion predicted by the linear theory (solid line)
and in the unstable region (dashed line). Later on, Figure 2bthe
dispersion of the initially unstable waves is strongly modified and,
moreover, back-propagating ion-acoustic waves appear.

The change of the dispersion (the increase of phase velocity,
see Figure 2b), is related to the quasi-linear heating of theelec-
trons since the ion-acoustic velocity is proportional to the thermal
velocity of electrons. The electron distribution functionindeed
clearly exhibits a signature of important heating as documented
in Figure 3. Figure 3 displays reduced distribution functions of
(a) electronsfe = fe(v) and (b) protonsfp = fp(v) at differ-
ent times (dotted curves)t = 0, (dashed curves)t = 2000, and
(solid curves)t = 4000 (see Figure 1). Note, that for protons we
use a logarithmic scale. Figure 3a indeed shows that at around the
saturation,t = 2000 (dashed curve), the electron distribution func-
tion strongly departs from the initial drift Maxwellian one(dot-
ted curve). At the end of the simulation the electron distribution
function is dominated by a pronounced plateau (solid curve)which
extends also to the negative velocities. This effect is a direct con-
sequence of the presence of back-propagating ion-acousticwaves.
Concerning the proton distribution function, Figure 3b shows that,
that only strongly suprathermal protons (with about|v| > 5vthp)
are accelerated.

Combining the results we got so far we have an explanation
of the growth of the effective collision frequencyν (Figure 1c)
after the saturation. This effect is related to the appearance of
back-propagating ion-acoustic waves. These back-propagating ion-
acoustic waves heat electrons and extend the quasi-linear plateau
to negative electron velocities (see Figure 3a) which leadsto the
increase ofν. These waves probably result from an induced scat-
tering of the instability-generated ion-acoustic waves onprotons:
The core part of the proton distribution satisfies the condition of
the wave-wave-particle interaction(k1 −k2)v = ω1 −ω2 between
forward (k1, ω1) and backward(k2, ω2) propagating ion acoustic
waves (note that we supposeω1,2 > 0, k1 > 0, andk2 < 0 in
contrast with Figure 2). The oscillation of the fluctuating electric
field energyWe (see Figure 1) may be connected with the back-
propagating waves. The beating of forward and backward propa-
gating waves would yield a frequency comparable to the observed
frequencyωE.
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Figure 3. Reduced distribution function of (a) electronsfe(v)
and (b) protonsfp(v) at different times (dotted curves)t = 0,
(dashed curves)t = 2000, and (solid curves)t = 4000 (see
Figure 1). Note, that for protons we use logarithmic scale.

5. Discussion

In this paper we have presented linear and quasi-linear theory of
the ion-acoustic drift instability and compared these theoretical pre-
dictions with Vlasov simulations in the case of these initial plasma
parameters [the same parameters as inWatt et al., 2002]: The tem-
perature ratioTp/Te = 0.5 and the drift velocity between electrons
and protonsvd = 1.7vthe.

The simulation results are in quantitative and qualitativeagree-
ment with the predictions of linear and quasi-linear theory[David-
son and Gladd, 1975]. Namely, the effective collision frequency
ν = |dpe/dt|/pe observed in the simulation is very close to
the values predicted from the quasi-linear theory during the lin-
ear phase and even around the saturation. The electrons are slowed
down even after the saturation owing to the appearance of back-
propagating ion-acoustic waves. These waves are likely produced
by induced scattering on protons as discussed byGaleev and
Sagdeev [1984]. A quantitative comparison with these theoretical
predictions is beyond the scope of this paper. The back-propagating
ion-acoustic waves interacts with electrons and extends the plateau
to negative electron velocities, so that the electrons are slowed
down and the effective collision frequency increases afterthe satu-
ration.

The effective collision frequency observed in the simulation is
from about two orders (during the linear phase) to one order of
magnitude (around the saturation) greater than the estimations of
Equation (1). This difference is considerably smaller thanthe re-
sults ofWatt et al. [2002] which is likely owing to the fact thatWatt
et al. [2002] used the non-realistic mass ratio since the effective
collision frequency scales asme/m

1/2

p [Petkaki et al., 2003]. Fur-
ther investigation of this problem is beyond the scope of this paper.

The disagreement between the simulations and estimation of
Equation (1) is not surprising since these estimations [Galeev and
Sagdeev, 1984] are derived forTp ≪ Te and for three-dimensional
geometry whereas in our simulation [and in those byWatt et al.,
2002] there isTp/Te = 0.5 and the physics is constrained to one
spatial and one velocity dimensions. Future work will be devoted
to the study of the influence of the initial plasma parametersand
the impact of a second spatial dimension.
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