BRITE reveals tidal interaction in the doubly-magnetic B-type spectroscopic binary Epsilon Lupi (#1258)

Gregg Wade¹, Bert Pablo³, Jim Fuller², Matt Shultz⁴, Stéphane Mathis⁵

¹Royal Military College Of Canada, Kingston, Canada ²KITP and TAPIR Caltech, Pasadena, United States ³Université de Montréal, Montreal, Canada ⁴Uppsala University, Uppsala, Sweden ⁵CEA, Saclay, France

Epsilon Lupi is a short-period spectroscopic binary system of two main sequence early B-type stars. Shultz et al. (2015) reported the detection of magnetic fields in both stellar components, making it the only known doubly-magnetic early-type binary.

Recent BRITE-Constellation observations of Epsilon Lupi reveal a rotationally-modulated lightcurve caused by periodic tidal distortion of the components (a "Heartbeat" effect). In this presentation, we describe the observed interaction, demonstrate that it can be exploited to derived precise parameters of the binary system and stellar components, and leverage these results to better understand the peculiar magnetic properties of the system.