BRITEning up the Be phenomenon (#1329)

Dietrich Baade¹, Thomas Rivinius², Alex Carciofi³, Christophe Martayan², Andrea Mehner², Despina Panoglou⁴, Andrzej Pigulski⁵

- ¹European Southern Observatory, Garching b. Muenchen, Germany
- ²European Southern Observatory, Santiago, Chile
- ³Universidade de São Paulo, Sao Paulo, Brazil
- ⁴Observatorio Nacional, Rio de Janeiro, Brazil
- ⁵Uniwersytet Wrocławski, Wroclaw, Poland

The Be phenomenon affects B stars with near-critical rotation, multi-mode nonradial pulsation, discrete mass-loss events, and Keplerian disks that are both built and demolished by viscosity. BRITE Constellation is making important contributions to the characterisation of the various stellar as well as circumstellar variabilities, through which these processes reveal themselves. In particular, it is taking up the challenges of establishing causal relations and of distinguishing stellar and circumstellar variations, which is made difficult by their broadly overlapping frequencies. Observations with BRITE Constellation may also be working their way towards the last currently remaining top-level secret of Be stars, namely the length of disk life cycles, which reaches at least a decade.