CGM studies at intermediate redshifts

Hadi Rahmani

C. Peroux & B. Milliard (*LAM, Marseille*) P. Møller, J. Vernet, R. Augustin (ESO) B. Husemann (MPIA) G. Kacprzak (Swinburne) V. Kulkarni (South Carolina) M. Pettini (Cambridge) L. Straka (Leiden) D. York (Chicago)

Gmail - EWASS 2017 Final information for speak

EWASS, Prague June 2017

Regulating galactic growth

- Feedback processes
 - Galactic winds
 - + **AGN** outflow

IGM gas accretion

 \checkmark gas depletion time scale

 $\tau_{dep} = M_{gas} / SFR < 1 Gyr$

✓ G-dwarf problem: closed-box model fails

$\checkmark \psi_{SFR}$ evolves much faster than Ω_{HI}

IGM gas accretion

√ Hot mode:

 $T \sim T_{vir}$ gas accreting through the hot atmosphere

√Cold mode:

T<10⁵ K cold-dense IGM filaments directly feeding the galaxy

Regulating galaxy growth

\checkmark outflow:

- perpendicular to the disk
- enriched

✓IGM accretion

- coplanar
- pristine

√bimodality?

✓QSO-galaxy pairs to probe CGM

Bimodality

Bimodality

pristine infall?

sub-DLA at $z_{abs}=0.43$, $Z\sim0.3Z_{\odot}$

MUSE: narrow band OIII

2 narrow components (\sim 3 km s⁻¹)

z = 0.38

 $Z > 0.2 Z_{\odot}$

only in continuum

2 narrow components (~3 km s⁻¹)

z = 0.38

 $Z > 0.2 Z_{\odot}$

Group or a filament!

lack of strong interactions

MUSE

 \mathbf{a}

(b) 2 extrapolated emission metallicity ~ 0.2 Z_{\odot} ($Z_{abs} > 0.2 Z_{\odot}$)

15

Outflow?

- very wide opening angle $(\Omega_{outflow} > 140^{\circ})$
- *more complicated* absorption profiles

● $Σ_{SFR}$ ~0.01 M⊙ yr⁻¹ kpc⁻² («0.1 M⊙ yr⁻¹ kpc⁻²)

Recycled gas (fountain)?

• if *ballistic: "j"* conserved $r_{1/2} \mathbf{x} V_{max} \sim b \mathbf{x} V_{abs}$ $V_{abs}^{fountain} \sim 12 \text{ km s}^{-1}$

 $(<< V_{abs} \sim 80 \text{ km s}^{-1})$

 \odot angular momentum lose×

```
angular momentum gain: 2-3 times
8-10 times gain in "j" not expected
```


Warped disk?

- $\delta v \sim 50-100$
- $(V_{abs} \sim 80 \text{ km s}^{-1})$
- \odot coplanar with the disk \checkmark
- $j_{w-d} \sim 3 j_{disk}$

Summary

- ✓ QSO-galaxy pairs with MUSE at intermediate redshifts
 - case 1: disk component + intra-group gas
 - case 2:

intra-group gas × kinematic disk ✓ outflow × recycled/fountain × warped-disk (cold-flow disk) ✓

✓ Powerful tool for CGM study at intermediate redshifts