Stellar evolution models with an experimental wind scheme

Zsolt Keszthelyi^{1,2}, Jo Puls³, Gregg Wade¹

1 Royal Military College of Canada

2 Queen's University

3 Universitätssternwarte München

Acknowledgements: Jorick Vink, Ines Brott, Norbert Langer, Raphael Hirschi, Jose Groh, Cyril Georgy

EWASS, 28 June 2017, Prague, Czech Republic

Motivation

The idea: constraints from stellar evolution

Motivation: overall mass-loss rates

Vink rates are widely adopted in stellar evolution model calculations, however:

- UV (Sundqvist+2011, Bouret+2012, Šurlan+2013)
- IR (Najarro+2011)
- X-ray (Cohen+2013, Leutenegger+2013, Rauw+2015)

diagnostics consistently yield a factor of ~2 **lower rates** than the Vink rates (summarized by Sundqvist+2013, Puls+2015)

Motivation: behaviour around the bi-stability

Theoretical prediction:

As v_{inf} decreases at a given T_{eff} , \dot{M} increases in response (Pauldrach & Puls 1990). FeIV \longrightarrow FeIII more lines (Vink+1999)

- Increase in M is predicted to be a factor of ~ 5-7 (Vink+1999, 2000)
- Jump temperature is recently confirmed at much lower T_{eff} than previously predicted, at ~20 kK and ~9 kK (Petrov+2016)

Observations:

- There is no (or a modest) increase in M at the bi-stability (Crowther+2006, Markova & Puls 2008)
- v_{inf} decreases gradually \rightarrow change in \dot{M} should be gradual

Stellar evolution models of massive stars

Well-known grids of models by

- Brott et al. 2011 (Bonn group, STERN) &
- Ekström et al. 2012 (Geneva group, GENEC)

adopted the Vink rates. However, 'modifications' in mass-loss rates need to be tested.

Keszthelyi, Puls, Wade 2017 (MESA)

$\begin{array}{l} \textbf{40} \ \textbf{M}_{\odot} \ \textbf{models} \\ \textbf{demonstration of the problem} \end{array}$

$40 \ M_{\odot} \ models$

40 M_o models: Overall rates

40 M_o models: Jump size

40 M_☉ models: Jump temperature

An experimental wind routine based on the Wind-momentum Luminosity Relation (WLR)

$$\dot{M}v_{\infty} \left(\frac{R}{R_{\odot}}\right)^{1/2} \propto L^{1/\alpha'}$$

$$\log D_{mom} = x \log L + \log D_0 \left(T_{eff}, Z \right)$$

WLR: Kudritzki+1995, Puls+1996

The possibility to include clumping corrected values!

$$\log \dot{M} = \log D_{mom} - \log v_{\infty} - \frac{1}{2} \log \left(\frac{R}{R_{\odot}}\right)$$

 \dot{M} (final)= f_{scal} \dot{M} (calculated)

$$\frac{v_{\infty}}{v_{esc}} = f_{vinf}$$

$$v_{esc} = \left(2\frac{GM}{R}\left(1-\Gamma_e\right)\right)^{1/2}$$

The routine is available on the MESA repository website.

MESA model comparison

MESA model comparison

An observational constraint

Vink+2010:

If there is a large jump in M, then this can lead to slowing down the surface rotation via bi-stability braking (BSB).

Note: an alternative solution is to reconsider the initial rotational velocities of O-type stars (Simón-Díaz & Herrero 2014)

40 M_o rotating models

Which models need BSB?

Code	Code Model		Internal B field	BSB required for
MESA -	- MB1	1	yes	$<30 M_{\odot}$
	MB2	1	no	$<30 M_{\odot}$
	MB3	0.3	no	$< 60 M_{\odot}$
	- MB4	0.3	yes	all models
STERN	Brott+	Vink	yes	all models
GENEC Ekström+ Vi			no	no model

Keszthelyi, Puls, Wade 2017

Which models need BSB?

Code	Model		Internal B field	BSB required for
MESA	r MB1	1	yes	$<30 M_{\odot}$
	MB2	1	no	$<30 M_{\odot}$
	MB3	0.3	no	$<\!\!60 \ M_{\odot}$
	└ MB4	0.3	yes	all models
STERN	Brott+	Vink	yes	all models
GENEC	Ekström+	- Vink	no	no model

• If M is reduced, then there is a need for BSB

Keszthelyi, Puls, Wade 2017

Which models need BSB?

Code	Model	$f_{\rm scal}$	Internal B field	BSB required for
MESA	∟ MB1	1	yes	$<30 M_{\odot}$
	MB2	1	no	$<30 M_{\odot}$
	MB3	0.3	no	$<60~M_{\odot}$
	└ MB4	0.3	yes	all models
STERN	Brott+	Vink	yes	all models
GENEC	Ekström+	Vink	no	no model

• If M is correct, then the evaluation of BSB depends on the internal angular momentum transport

Keszthelyi, Puls, Wade 2017

Conclusions

New stellar evolution models need to update their mass-loss routines for hot massive stars:

- The position of the jump (20 kK, 9 kK, see Petrov+2016)
- The gradual change in M (e.g. Crowther+2006)

A dichotomy in the solution:

- either early M is overpredicted, and then there is a need for a large jump at the bi-stability, or
- early M is correct, and thus a large jump can be avoided (but model dependent)

Additional slides

40 M_o rotating models with an experimental wind scheme

M_{\odot} rotating models with an experimental wind scheme

An experimental wind routine based on the Wind-momentum Luminosity Relation (WLR)

$$\log \dot{M} = \log D_{mom} - \log v_{\infty} - \frac{1}{2} \log \left(\frac{R}{R_{\odot}}\right)$$

WLR: Kudritzki+1995, Puls+1996

$$\log D_{mom} = x \log L + \log D_0$$

Reference	$x = \frac{1}{\alpha'}$	$\log D_0$
Kudritzki & Puls (2000), OI	1.51	20.69
Vink et al. (2000), OB	1.83	18.68
Repolust et al. (2004), OI, *cl	2.00	17.98
Markova et al. (2004), O, "case D"	1.90	18.58
Martins et al. (2005), O	3.15	10.29
Mokiem et al. (2005), O, early B	1.86	18.71
Mokiem et al. (2005), O, early B, *cl	1.58	20.16
Mokiem et al. (2007b), O, early B	1.84	18.87
Mokiem et al. (2007b), O, early B, *cl	1.56	20.23

The routine is available on the MESA repository website.