A distributed and enhanced implementation of unsupervised ANNs applied to spectrophotometry clustering in the ESA Gaia mission EWASS 2017 — Prague

> Daniel Garabato daniel.garabato@udc.es

University of A Coruna — Department of Computer Science

June 2017

Outlier Analysis (OA)

A distributed SOM

Results

Overview

- Cornerstone mission of the European Space Agency
- Study the formation and evolution of the Milky Way
- Survey celestial bodies down to magnitude 20
- Launched in 2013 5 years of routine operations
- ► Final catalog foreseen for 2022–2023
- ▶ Up to 10¹² observations will be measured (80 epochs)
- A PetaByte of information will be generated (\sim 36 GB per day)

The data — Focal Plane

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The data — Blue & Red photometer spectra

Data Processing and Analysis Consortium (DPAC)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

CU8 — Source classification

Main classifiers:

- Discrete Source Classifier (DSC)
- Object Cluster Analysis (OCA)

Outlier Analysis (OA)

Outlier Analysis (OA)

Overview

- Analyze outlier sources:
 - Misclassified sources
 - Damaged sources or artifacts
 - Sources whose nature is unkwnown
- Clustering Self-Organized Maps (SOM):
 - Unsupervised learning: Group sources by their nature
 - Reduce the high dimensionality of the data
 - Distributed computing ($\sim 1~\text{PB}) \rightarrow$ Batch SOM
 - Optimization \rightarrow Fast SOM

A distributed SOM

Apache Hadoop — Apache Spark

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A distributed SOM

SAGA framework (CNES)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Results

Clustering performance

To check if the SOM is working correctly, we train a map with a well known data set, such the SDSS with 10125 objects, and we use a labeling process in order to idenfify the clusters.

Results

Execution times

- SAGA framework:
 - \blacktriangleright Introduces a \sim 10 % of overhead with respect to a pure Hadoop due to the framework's management tasks
 - OA is expected to be executed in a couple of weeks using CNES hardware to process 100M sources

Conclusions & Future work

- A powerful tool for unsupervised classification of outliers has been developed
- This algorithm is very useful to identify and classify "weird celestial objects", with special interest in those sources whose nature is unkwnown
- Such an algorithm is scalable and it can be applied to huge volumes of data
- The execution times were considerably reduced by using the Fast SOM approach
- We expect that the execution times can be even better using GPU computing techniques