TRANSIENT SKY IN THE BIG DATA ERA

ŁUKASZ WYRZYKOWSKI (pron: Woocash Vizhikovsky) WARSAW UNIVERSITY OBSERVATORY

with:

S.Hodgkin, M.Gromadzki, A.Hamanowicz, K.Rybicki, J.Klencki, Z.Kostrzewa-Rutkowska,, OGLE and Gaia Teams.

EWASS 2017, Prague S14-Astroinformatics

TRANSIENT SKY

Plot Generated 22-Jun-2017

STATS

TNS since Jan 1, 2016 Reported : 9547 classified : 879 <10% ratio classified: Pan-STARRS1 136/5908 GaiaAlerts 116/2224 ATLAS 143/574 ASAS-SN 190/254

STATS

TNS since Jan 1, 2016 Reported : 9547 classified : 879 < 10% ratio classified: Pan-STARRS1 136/5908 GaiaAlerts 116/2224 ATLAS 143/574 ASAS-SN 190/254

GO BRIGHT? bright is good:

- easy to detect
- easy to follow-up for long time until late epochs
- studies of detailed aspects of explosions

GO BRIGHT? bright is good:

- easy to detect
- easy to follow-up for long time until late epochs
- studies of detailed aspects of explosions

should we go bright only?

No!

GO BRIGHT? bright is good:

- easy to detect
- easy to follow-up for long time until late epochs
- studies of detailed aspects of explosions

should we go bright only?

No!

GO FAINT!

- many interesting transients are faint!
- distant SN Ia Dark Energy and cosmology
- lensed supernovae Dark Matter distribution
- SN impostors SN physics
- faint and fast new rare explosions
- the unknown!

PRE-CLASSIFICATION

context level

light curve level

spectrum level

1-bangom

6600

6650

PIXELS

easy examples

reference image

current image

difference image

hard examples

PIXELS

bogus examples

reference image

current image

difference image

PIXELS

real-bogus classification

- Self-Organizing Maps on difference images
- single image used only allows rapid detections of transients!
 3% false positive rate

Klencki et al. 2016

wealth of archives with imaging and catalogues
problem: missing data (e.g., SDSS imaging only in the North)
Decision Trees, Fuzzy SVM

• wealth of archives with imaging and catalogues • problem: missing data (e.g., SDSS imaging only in the North) Decision Trees, Fuzzy SVM

multi-wavelength surveys: Rosat (X) GALEX (UV) Wise (IR) 2MASS (NIR) large fraction of the sky!

Assef+2013

wealth of archives with imaging and catalogues
problem: missing data (e.g., SDSS imaging only in the North)
Decision Trees, Fuzzy SVM

multi-wavelength surveys: Rosat (X) GALEX (UV) Wise (IR) 2MASS (NIR) large fraction of the sky!

large flare missed in a known AGN z=0.324

LIGHT CURVE

• simple parameters:

- last non-detection
- rising slope
- max magnitude
- •training set: 90 spectroscopically
- classified supernovae
- •classifier: Random Forest
- correct answers: 84%

LIGHT CURVE

test on Stripe 82

LIGHT CURVE

new supernovae in Stripe 82

overlooked super-luminous supernova found: Z.Kostrzewa-Rutkowska+2013

LIGHT CURVE - MICROLENSING

5 million objects per frame and ~1 star is brighter due to microlensing

LIGHT CURVE - MICROLENSING

Supervised classification on 150 million light curves Random Forest with 26 attributes

Wyrzykowski+2015

LIGHT CURVE - MICROLENSING

Hunt for black hole lenses - very long events Pre-filtering for transients: **skewness-vonNeumann** Random Forest to pick assymetric light curves

-0.05 -0.10 2000 2500 3000 3500 4000 4500 5000 HJD - 2450000 [days]

nearby WD/NS/MS candidate M= ~1.3 M_o D=~0.6 kpc

Wyrzykowski+2016

SPECTRA (LOW RESOLUTION)

Gaia delivers low-res (R<100) spectra for ALL OBSERVATIONS powerful to recognise SN Ia, SN II, CV, stars training on thousands of known transients spectra in high-res

SUMMARY

• to exploit science with transients we NEED Machine Learning NOW!

- individual solutions and ideas exist:
 - pixel level
 - context level (archives)
 - light curve level
 - spectra level

• is there a need for a clever, self-adjusting, unified and ultimate classification tool for generic application for transients?