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Background

 Galaxy classification is important as it allows us
to learn more about the evolution of the
universe

« Manual classification is time-consuming and
tedious

e Aim to achieve automatic classification
(machine learning)

e This has mainly been done with optical galaxy
Images, eg Kaggle Galaxy Zoo



Neural network basics
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Convolutional neural networks
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Deep learning with radio galaxy
Images

 Motivation is to find meaningful classifications
for radio galaxies
- FRI, FRII (Fanaroff-Riley)

— Double-double

— Bent-tailed




Radio Galaxy Zoo (RGZ) data
provided

Have been given access to image data of 206399
galaxies, from fits files

No label data provided — needed to generate labels
Single channel

Typically (132,132) pixels

Images contain different numbers of sources

Used PyBDSF (Python Blob Detector and Source
Finder) to help organise the data

Successfully processed 175454 images



Classifying between point and
extended sources

* First see if deep learning algorithm can
distinguish between point sources and
extended sources

Source type

Point source

Extended source

o= —

PyBDSF folder

One source*

> Three sources

Maj

# Sources

18716

17999

1
2 (B_Maj =

Min )
B_Min

1.0}

o
o

Appearance
o
N

=
o

o
B

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

(e

* Additionally filtered using Laplacian of Gaussian and Difference of Gaussian algorithms



Image Augmentation

Generating more data through label-preserving
transformations

36715 original images
107968 augmented images (3x original dataset)

Done with Keras
— Rotation

- Flipping
— Horizontal and Vertical shift

No shearing or stretching



Deep learning algorithms

 Lasagne neural network, experiment with
changing:
- Number of layers
- Using augmented images
— Using a subset of images

 Tensorflow for Poets (‘Black box’ approach)

- Place point and extended sources into separate
folders



Lasagne network parameters

Batch size 8
Categorical cross-entropy cost function

rain for 1000 epochs

Mini-batch Stochastic Gradient Descent (SGD)
with Nesterov momentum 0.9 and weight decay
of O

Divide data into training, validation and test
data sets

Division method  Training  Validation Test

Divl 81% 10% 9%
Div2 60% 33% 6.7%




Lasagne results — Effect of using
augmented images

144683 images in total
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Lasagne results — Effect of using
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Tensorflow results

 Performs better when original images are used,
rather than with additional augmented images

e Inferior performance to Lasagne neural network
approach

- Lasagne network enables more control over
parameters

# Total images # Compact source # Extended source

36715 18716 17999
144683 72699 71984
# Test samples # Training steps Test accuracy
3603 4000 95.60%

14454 4000 94.60%




Conclusions and next steps

* Able to discriminate between compact and extended
sources with typically > 96% test accuracy

* Neural network built with lasagne produces
accuracies that supersede the tensorflow approach
— 3 conv + 2 dense architecture

— Larger chunk sizes tend to give better accuracies, at
expense of overfitting

— Make sure that enough original images are used since
augmented image probably have interpolation artefacts

* Generate more specific classifications for extended
sources
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