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All software, papers, discussion, demos, etc. are available here: http://dame.dsf.unina.it/
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Data Mining & Exploration

We make science
discovery happen

Home

Software Services
Science Cases
Publications

Education & Lectures o
Welcome on DAME official web portal!

Who's who
Nowadays, many scientific areas share the same
need of being able to deal with massive and
distributed datasets and to perform complex
2 5 knowledge extraction tasks. DAME (DAta Mining
March 15-17, 2016 v |WI]I|(S§:£ g & Exploration) is a general purpose, web-based,

| =SS 2 s R - distributed data mining infrastructure specialized
ESA BIDS 2016 —gmaﬂhlﬂﬂl in Massive Data Sets exploration with machine
learning methods.

Latest News and Events

Auditorio de Tenerife, Santa

Cruz de Tenerife, Spain Initially fine tuned to deal with astronomical data only, DAME has evolved in a
general purpose platform program, hosting a cloud of applications and services
useful also in other domains of human endeavor.

Apr 4-9, 2016 DAME is an evolving platform and new services as well as additional features are
continuously added. The modular architecture of DAME can also be exploited to

BSE Training School 2016 build applications, finely tuned to specific needs.

BIGSKYEARTH Cost Action, The goal of DAME is to offer and develop open and broadly available software tools

Aerospace Center at and services for scientific purposes. Groups or individuals interested in collaborating

Oberpfaffenhofen, Germany or participating in scientific and/or technological projects/activities are welcomed
and encouraged to contact us. Please, consult policy and citation document.

Apr 18-22, 2016
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Distilled problems as derived from our experience on many data sets...

¥

. Coverage of the Observed
Parameter Space by the knowledge
base (biases, outliers, peculiar and
rare objects, etc... nature of the
sample, etc.)

. Choice of the method
. Feature selection
. Missing data

. Error estimation

...on many problems....

Sloan Digital Sky Survey (SDSS)
Kilo Degree Survey (KiDS)
SUBARU/HSC-COSMOS (also EMU)

Euclid (DC1 & 2)
VST-VOICE
CRTS

LSST

Star/Galaxy xlassification

Classificcation of galaxies (emission lines, AGN, starburst, etc.)
Metallicty

Star formation rates

Young stellar objects (via Lactea Project, cf.Molinari’s talk)

Photometric redshifts

Non astronomical data sets
(biomedical and geophysics)




Two approaches SED (Spectral Energy Distribution) fitting

2.5
Library of M template spectra (M<100)
2 Convolve with filter bandpasses for a specific survey

Stretch templates for redshift (z) assuming constant step Dz
in an interval range z,i, , Zax

AT N

-3

SED(T,,z,,, +nAz) i€{l,M}, ne {1,ZmaxA—Zme }

Find best fitting i,j using any optimization method
2000 3000 4000 5000 6000 7000 8000 9000
A[AA]

Templates: either synthetic or observed
But they go very deep, well beyond

Arbitrary choice of templates, lots of assumptions on physics  the spectroscopic limit
Strong dependence on zero points, photometric calibrations,

etc.
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Machine learning methods

Library of true template spectra (large samples) from real objects
(training set)

A DR6

DI o L L L

Zgpec

Use examples to find the mapping function

More accurate than SED fitting

But:

Need for the training set to properly cover the OPS

Need to select proper set of features
Need to properly handle missing data

Models are almost irrelevant

SVM (various flavours), (MLP’s - many implementations); Decision Trees, RF
(various flavours), kNN, etc...




. Astroinformatics of galaxies and quasars: a new general method for photometric
PhOtO Z for QuasarS. redshifts estimation, O. Laurino, R. D'Abrusco, G. Longo, and G. Riccio,
MNRAS, 2011, 418, 2165 (arXiv/1107.3160);
WGE: Weak Gated Expert

Data from the unresolved objects SDSS catalogue

Photometric redshifts: the method

Fuzzy K-means
clustering

PS clustering |

Neural

‘Experts Networks

Neural Network
(different architecture)

‘Gating Expert’




Zphot

Optical bands only Optical + UV bands s ) s g o

o2 =0.022

Zhot

Zphot
2
1

Zapec

yper panel, it is shown the scatter plot of the spectroscopic versus photometric redshifts evaluated with the WGE method for the members
0 1 2 3 4 5 o 1 Py 3 4 ‘ ; e
periment for the quasars extracted from the SDSS catalogue with optical photometry, while in the lower panel the scatter plot of the
Zupec Versus Az variable is shown for the same sources. All points are colour coded according to the value of the errors o-,,,, as evaluated
Zopec Zise ertical dashed lines represent the redshift at which the most luminous emission lines characterizing quasars spectra shift off the SDSS
e <tie to redshift. Most of the features of the plot are associated to one or more of these lines.

1.st lesson: Additional Info are always needed to understand systematics

Ex. Position of emission lines relative to filter bands



Second method on same OBJECTS: MLPQNA

Survey Rands Name of fture Synthetic description Parameter space more complex and

CALEX nuv, fuv mag, mag.iso Near and Far UV total and sophotal mags =
mag-Aper_]l mag-Aper_2 mag Aper_3 phot. through 3, 4.5 and 7.5 arcsec apertures need for Featu re seIeCtlon
magauto and kron radius magnitudes and Kron radius in units of A or B

SDSS u, g ri,z psfMag PSF fitting magnitude in the u g, r, i, z bands.

UKIDSS Y, LHK PsiMag PSF fitting magnitude in ¥V, J,H K bands
AperMag3, AperMagd, AperM. ¢ through 2, 2.8 & 5.7" H H H H

A S sl omannr e e Photometric redshifts for quasars in multiband

HallMag, PetroMag Calibrated magnitude within circular

apertare r_hall and Petrosian magnitude surveys, M. Brescia, S. Cavuoti, R. D’Abrusco, A.

in Y, J, H, K bands

WISE W1, W2, W3, Wi Wimpro, WZmpro, Wimpro, Wampro  W1: 3.4 jam and 6.17 amgalar resohation; Mercurio. G Longo 2013 ApJ 772. 140 (astro_ph .
W2: 4.6 pm and 6.4" angular resolution; ’ ) ’ ’ ’ ’ )
W3: 12 pm and 6.5 angular resolution;
Wa: 22 Zm and 127 :m;.x‘;;u resolution. M)
Magnitudes measured with profile-fitting photometry
at the 95% level. Brightness upper limit if the fux
measurement has SNR< 2

SD&S - Zapec Spectroscopic redshift

Table 6. Catastrophic outliers evaluation and comparison between the residual
Odean(AZnorm ) and NMAD(Az,,,m). The reported number of objects, for each
cross-matched catalog, is referred to the test sets only. Catastrophic outliers are defined as
objects where |Azrm| = 20 (Azporm ). The standard deviation 0 g.gn(Azporm) is calculated
after having removed the catastrophic outliers, i.e. on the data sample for which
A Zporm| < 20 (Azporm)

Exp n. obj. o (Aznorm) % catas. outliers v, T ,{—, NMAD (Aznorm)
2-nd lesson: SDSS 41431 0.15 6.53 0.082 0.058
i i SDSS + GALEX 17876 0.11 4.57 0.045 0.043
Addi ng more paramete rs may improve SDSS+ UKIDSS 12438 0.11 3.82 0.041 0.040
pe rformances ... but.... SDSS+CALEX + UKIDSS 5836 0.087 3.06 0.040 0.032

SDSS+GALEX+UKIDSS+WISE 5718 0.089 2.88 0.035 0.029




Table 4. Comparison among the performances of the different references. MLPQNA is
related to our experiments, based on a four-layers network, trained on the mixed (colors +
reference magnitudes) datasets. In some cases the comparison references are not reported,
due to the missing statistics. Column 1: reference; columns 2-6, respectively: bias, standard

deviation, MAD, RMS and NMAD calculated on Azporm = (Zepee — Zphot) / (1 + Zapee)

related to the test sets. For the definition of the parameters and for discussion see text.

Exp BIAS(Aznorm) o(Azmorm) MAD(Aznorm) RMS(Aznorm) NMAD(Aznorm)
SDsS
MLPQNA 0.032 0.15 0.039 0.17 0.058
Laurino et al. 0.095 0.16 0.041 0.19 -
Ball et al. 0.095 0.18 - -
Richards et al. 0.115 0.23

SDSS + GALEX

MLPQNA 0.012 0.11 0.029 0.11 0.043
Laurino et al. 0.058 0.29 0.029 0.11 -
Ball et al. 0.06 0.12
Richards et al. 0.071 0.18

SDSS + UKIDSS

MLPQNA 0.008 0.11 0.027 0.11 0.040

SDSS + GALEX + UKIDSS

MLPQNA 0.005 0.087 0.022 0.088 0.032

SDSS + GALEX + UKIDSS + WISE
MLPQNA 0.004 0.069 0.020 0.069 0.029

Different Machine Learning methods of different complexity (MLPQNA is simpler

Table 5. Comparison in terms of outliers percentages among the different references. In

some cases the comparison references are not reported, due to the missing statistics.
Column 1: reference; Column 2-3 are fractions of outliers at different o based on
Az = (Zgpee — 2phot); Column 4-5 are the fractions of outliers at different ¢ based on
AzZnorm = (Zspee — Zphot) [ (1 + Zspee). The column 4 reports our catastrophic outliers,
defined as |Azuorm| > 20(Aznorm)-

Exp Qutliers (|Az]) Qutliers (|Aznorm|)
> 20(Az) > do(Az) > 20(Aznorm) > 40(Aznorm)
SDSS
MLPQNA 7.68 0.38 6.53 1.24
Bovy et al. 0.51

SDSS + GALEX

MLPQNA 4.88 1.61 4.57 1.37
Bovy et al. 1.86

SDSS + UKIDSS

MLPQNA 4.00 1.73 3.82 1.38
Bovy et al. 1.92

SDSS + GALEX + UKIDSS

M[J’Q.\'.‘\ 288 147 3.05 0.23
Bovy et al. 1.13

SDSS + GALEX + UKIDSS + WISE

MLPQNA 257 0.57 2.88 0.91

than WGE) lead to similar results with a slight edge for MLPQNA



A few selected resuls from a large variety of methods applied to the same data set and problem
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Cavuoti, Tortora, Brescia, Longo et al.,

MNRAS, 2016

More or less, different ML methods are
equivalent

(no need to look for the latest
fashionable method ... just to produce
one paper more....)

Room for improvement is elsewhere



Feature selection

Coverage of the observed parameter space

»Missing or uneven spectroscopic coverage

»Peculiar objects (different populations result from different selection criteria)
»How to go beyond the spectroscopic limit

Missing Data
» Need to handle differently “non detections” and “non observed”
(Cavuoti et al. in preparation)

Evaluation of errors
» Probability distribution function
» Proper choice of statistical indicators



Photometric redshifts for QSO'’s ... a data driven approach

. !
(from K. Polsterer, Heidelberg, 2015) 341,055 combinations

One does not know a-priori which features are the most relevant (”_ ’”)!’"!

Use all 55 significant photometric features to select the most significant 4

Laurino et al. - -
Traditional feature selection Best combination
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Results comparable to Brescia
et al. 2014
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Photometric redshifts for SDSS QSO (From K. Polsterer)

PSF, Petrosian, Total magnitudes + extinction + errors 585 features.... Let us find the best combination of
10, 11, 12 etc... using FEATURE ADDITION

For just 10 features 1,197,308,441,345,108,200,000 combinations

error diagram k=7 prediction quality k=7

MAD Az,

You hit a plateau at
— RMSAZ,,

10 features. (Zpdf ) —dered (l'pm)

dered —dered
Accuracy twice ere (gpsf) ered(r,)

Level achieved with . T ~dored
human biases in T 1 better dered( pSf) ere (Zmod)

feature selection

\\x‘vm i | ¥ These 10 features

L T 4 do not make sense ;

Level achieved by i Ty R : to an astronomer Lost — Uperr
- 3 -‘n "
machines alone (D3) dered(z
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Afterwards ... astronomers may find explanations ....
(Capak, private comm.)

Filter leaks, eftc...

Lesson to be learned

mod

) dered ( - )

Features which carry most of the information are not those
usually selected by the astronomer on the basis of his/her
personal experience....

Let the data speak for themselves ?




Feature Selection

Behind the concept of Feature Selection, there is the property of feature importance and relevance in the
context of a parameter space used to approach any prediction/classification task with machine learning
methodology.

The importance of a feature is the relevance of its informative contribution to the solution of a learning problem.

An effective FS should avoid the time-consuming exhaustive exploration of the parameter space and should take
into account what is known about its features, i.e. their variability in the given knowledge base domain, not
forgetting to take care of the curse of dimensionality problem.

We have designed a FS method (Brescia et al., in prep.), based on a combination of Random Forest, Logistic
Regression and L,-norm regularization, able to overcome known statistical limitations of importance obtained by
Random Forest, and by exploiting the virtuous regression control mechanism induced by the regularization
concept, as already positively experimented in the learning rule of our MLPQNA neural network method (Brescia
etal. 2013, Apd 772, 2, 140).

We started to validate such method in some astrophysical contexts, resulting highly promising, for example, in
the star forming evolutionary classification problem (see talk of S. Molinari, presented yesterday) and currently
under test in the COSMOS galaxy photo-z and multi-survey (from UV to NIR) quasar photo-z prediction use
cases.



Training set coverage of OPS

Masters et al., 2015, Astrop. Journal, ] i
g Exploring the parameter space using SOM
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Ly —alpha break
u-g at 2.5<z<3.0
g-r at 3<z<4

Passive and dusty

galaxies at low
redshift




°—

10 20 30 40 50
Cell Occupation

Fic. 3.— The SOM colored by the number of galaxies in the

overall sample associating with each color cell. The coloration is

effectively our estimate of p(C), or the density of galaxies as a
function of position in color space.

How the training set populates the “Euclid” parameter space

Poor coverage of many areas.

0 1 2

NO data....
... NO Results

Distribution of redhifts
projected on the SOM




Catastrophic outliers as peculiar objects ?
(Petrillo Laurea Thesis 2013, University of Naples)

sF * Blu dots: blazars

. « Green dots: unknown CO’s

| _ . * Red triangles:

5 &k R PR, . . gravitationally lensed quasars

Gravitational lens
candidates

Peculiar objects



How about standard quality flags?

SDSS provides a complete set of quality flags extrapolated from astronomers expertise

PSF_FLUX_INTERP 8%  21%

INTERP_CENTER 10%  29% Inspection of flags for CO’s shows that these flag are practically
DEBLEND_NOPEAK 0% 3% useless to discriminate CO'’s

science_primary=0 11% 24%

nuv_flags 11% 18%

fuv_artifact 18%  24%

SO FAR NO CHECK FOR DEPENDENCE ON VARIABILITY (AGN)

Most studies on SDSS which is almost simultaeous in all optical bands

Crosscorrelation with other catalogues to check for variability (e.g. CRTS)

SOME IMPORTANT FLAGS ARE MISSING IN DBs.... For instance:

Very bad problem
(poorly explored)

Future surveys will
produce non optically
selected samples (largely
dominated by AGN)
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Fig. 13.— Summary of the results obtained in the experiment (RDNY) with the various methods.
Performances are estimated on the blind set. Panel a) MLPQNA. Upper plot: scatter plot of
spectrscopic redhifts for objects in th etest set against the photometric redshift estimate. Lower
plot: normalised residuals against redshifts. Panel b) same as for panel a but for RF-NA. Panel c):
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Result on EMU like sample extracted from COSMOS
(Salvato M. et al. 2017, in preparation)

Sample dominated by radio loud and X ray detected
AGN

16 experiments with a variety of ML and SED fitting
methods

Id. CODE KB bias depth Radio X-AGN
Al BDNY BR DEEP N Y
Bl BDYY BR DEEP Y Y
C1 BDNN BR DEEP N N
D1 BDYN BR DEEP Y N
E1 BSNY BR SHAL N Y
F1 BSYY BR SHAL Y Y
G1 BSNN BR SHAL N N
H1 BSYN BR SHAL Y N
A2 RDNY RND DEEP N Y
B2 RDYY RND DEEP Y Y
C2 RDNN RND DEEP N N
D2 RDYN RND DEEP Y N
E2 RSNY RND SHAL N Y
F2 RSYY RND SHAL Y Y
G2 RSNN RND SHAL N N
H2 RSYN RND SHAL Y N

Table 2: Summary of the experiments. Column 1: running id; column 2: identification code; column
3: Bright (BR) or Random (RND) training set; column 4: shallowness of ancillary data; column 5:
radio fluxes used (Y) or not used (N) in training; column 6: bright X ray detected AGN included
(Y) or not included (N) in the training set. General consideration: while working on the
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Concept Idea - virtuous cooperation between SED fitting and ML
Cavuoti et al. 2017, MNRAS 466, 2

. Derive traditional photo-z’s with
all methods;

.Use Le Phare bounded with
spec-z's to obtain a reference
classification;

.Use Le Phare bounded with
photo-z’s to perform a series of
classifications;

. Identify the best classification
using as ground truth
reference classification (step

2);
. Perform a photo-z regression
by training MLPQNA on

separated subsets specific for
each class;
. Recombine the output.

2

the 1

Le Phare Reference
classifier classification
lePhare | 3
photo-z
MLPQNA N Le Phare
photoz | | | classifier
LEMON | | \
photo-z Best
classification
RF | |
photo-z
BPZ |
photo-z

MLPQNA

The proposed workflow, involving
different methodologies by
mixing in a single collaborative
framework SED fitting and
machine learning models, is able
to improve the photo-z prediction
accuracy by ~10%.

(KiDS-DR2 data)

[IITLR

new
photg-z



How to take into account photometric, initialization errors, and model dependent
errors to produce a pseudo-PDF

SED fitting produces pseudo-PDFs using the fits to the different templates

ML methods need a different approach

METAPHOR
* Internal errors (initialization of weights)

s 4 Brescia, Cavuoti, Amaro,
* Photometric errors Vellucci & Longo 2016,
2017 (in prep)

* Errors in the KB (misclassified objects, poor coverage of OPS,
peculiar objects, etc)



PDF base algorithm processing flow (>

S chd

Spectroscopic
sample

Binning of Zspec <

Hierarchical approach

Off-line optional validaton PDF
estimation

N-class
Regression

distribution

!

Assign class
labels to bins

v

Train + test
sets

step

N-class
Classification

step NO

®
—> ﬁ‘; — Sufficient
® Accuracy?

|

Photo-z |
distribution




An application to KiDS (Kilo Degree Survey- KiDS)

' MLPQNA TEST
outliers > 0.15

07

method bias bias Ogs NMAD outliers %
|Az| |Az/(1+2)| | Az/(1+z) | Az/(1+z) | |Az/(1+z)]|>0.15

MLPQNA | 0.00010 | 0.00088 0.021 0.021 0.40

from PDF | 0.0086 0.0063 0.022 0.021 0.39

2ZPHOT

Table 2 — Statistics on blind test set for the photo-z estimates with MLPQNA, before and after PDF calculation.
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Figure 3 — MLPQNA based photo-z VS zspec plot for the blir::;ﬁtcest set. Green lines are referred to the outl - [’Hﬁl
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Figure 4 — Distributions of Az/(1+z) for the photo-z obtained by MLPQNA.
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. Machine Learning is an ART based on hard work and a deep understanding of each

step involved in the process

(i.,e. IT CANNOT BE IMPROVISED just because there are user friendly packages available).... The
simpler is the method the more difficult is to obtain robust and stable results...

Need to take into account a priori information

Need to have a deep understanding of the data themselves (selection effects introduced by previous
classification steps)

Combination of various methods can help

. To optimise the use of ML in future surveys we need:

to redefine the way we measure the observable parameters (very probable) and assign quality flags
(definitely true)

to optimise the coverage of the parameter space via specific spectroscopic campaigns (true)

large computing power for feature selection phase (true) and smarter algorithms for FS

. Suggestions to end users.

Watch out for statistical indicators.... Often they do not mean much
Check for biases in the imput catalogues
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