» .“,_ J"
' A) '.; .

B A n ' iV TR > o TEY EWASS 2017 » e 4
PRAGUE 26-30 June 2017 , s > =~k European Week of Astronomy and SpaceScuence

Astroinformatics Symposium - From Big Data to Understanding the Universe at Large

Large Scale Data Management of Astronomical
Surveys with AstroSpark

Karine Zeitouni Mariem Brahem* Laurent Yeh

Computer Science Dept, University of Versailles (UVSQ), France
(*) PhD co-funded by UVSQ & CNES Toulouse

untversiTE D WA
VERSAILLES ww»

L]
d CAV SV d ST-QUENTIN-EN-YVELINES

données et algorithmes unlver5|te PARIS-SACLAY
pour une ville intelligente et durable

Introduction

Data Deluge in Sky surveying

= The largest and most
precise 3D map of the
Galaxy

= 1 billion stars observed
over 5 years

= Data Volume ->1PB

= Dec. 2013- 2020
Gaia mission, ESA LSST project

| = Tens of billions of
objects

= Data Volume -> 15PB
for the catalog

= >2020->+ 10 years

=> How to efficiently manage such Big Data in astronomy ?

AstroSPARK Karine Zeitouni 2

Today’s Situation

. |

* Astronomical Surveys are mostly e Popular Big Data platforms propose a
accessed using SQL Dialect distributed frameworks
v’ By integrating a library of geometrical v’ Most tend to implement SQL
functions to SQL (eg. ADQL) v/ Allow user-defined functions

v’ And spatial indexing techniques to
optimize the query execution

e Mainly implemented within relational | |~ Apache Sparkis among the most popular

frameworks
DBMSs
e SkyServer for SDSS
e Postgres Q3C & Pgsphere
=>» But do not scale with the expected data => But do not support astronomical data
volume access and manipulation

AstroSPARK Karine Zeitouni

Objective

* Combining the best of two worlds:

. , Astronomical Data Query
* Expressivity of the declarative query language

Language
* We choose ADQL as a basis for the SQL dialect (ADQL)
* Scalability of distributed frameworks T o e soureld
_ WHERE CONTAINS(POINT(‘ICRS’,alpha,delta),
* We choose Apache Spark as a cluster computing ptatform CIRCLE('ICRS", 10, 5, 1)) = 1;

1. How to allow the support of ADQL within SPARK SQL ?
2. How to optimize the query processing in this context ?

AstroSPARK Karine Zeitouni 4

Why SPARK ?

* Up to 100x faster than Hadoop MapReduce
* thanks to its execution engine that supports acyclic data flow
* and in-memory computing.

* Improves usability (2 to 10 less code) through:
e Rich APIs in Java, Scala, Python

* Interactive shell, SQL
* Works with any Hadoop-supported storage system (HDFS, Amazon S3, Avro, Parquet...)

* Provides 2 types of Operations:
* Transformations (e.g. map, filter, groupBy, join) -> Lazy operations to build RDDs from other RDDs
* Actions (e.g. reduce, count, collect, save) -> Return a result or write it to storage

Outline

Introduction

AstroSpark Architecture
Data Patitioning Algorithm
Cross-Matching

Experimental Evaluation

U O 0 0 O

Conclusion

AstroSPARK Karine Zeitouni

Towards AstroSpark

»We propose a distributed framework specifically tailored for data intensive

applications in astronomy

* This leads to revisit the optimization techniques in this perspective :
v Physical organization of data: Partitioning
v’ Logical and physical query optimization and processing
v’ Using a Cost model (1/0, CPU, Communication, Coordination, ...) in the query evaluation

v Multi-query optimization: caching techniques

AstroSPARK Karine Zeitouni

Observations & Design Principle

» Specificity of the data

= Astrometric data are typically big spatial data

= Use spherical coordinates (e.g. International Celestial Reference System - ICRS)
—>Data organization matters

» Specificities of the queries

" Frequent use of distance-based filtering, joins and top-k: Cone Search, Cross-Matching,
Nearest Neighbors

= Complex data processing due to large volume of data and the variety of the queries
—>Algorithms and query plan should be adapted

AstroSPARK Karine Zeitouni

e—’”—‘ﬁ“

Observations & Design Principle

Principle 1: Reuse proven methods and tools

= Spatial indexing techniques are widely used in sky surveying
—>Reuse HEALPIX index & library

Principle 2: leverage the power of the target framework
= Add the the strictly necessary extension

v'To support the query syntax of ADQL

v'To evaluate and optimize the queries

AstroSpark Architecture

Input Data _
Querying system

Query Language (ADQL)

Query Parser

Data
Partitioning

Query Optimizer (extended
Catalyst)

Healpix

library Storage SPARK Core
(HDFS)

Partitioning

e Definition
* Partitioning is the process of dividing data into subgroups
* Partitions are processed in parallel with different nodes
* One node can process many partitions

* Importance
* Enables query processing in parallel
e Reduces computer resources
* Improves query performances

AstroSPARK Karine Zeitouni

11

Partitioning Requirements in AstroSpark

1. Data locality
* Points that are located close to each other should be in the same partition.
* Adapt to the spherical space

2. Load balancing
* Avoid imbalanced partitions
* Partitioning should be adaptive to the data distribution

Grid Spherical
partitioning partitioning
AstroSPARK Karine Zeitouni 12

Partitioning in Spark

INPUT FILE

* Hash partitioning
* Partitions data quasi-randomly

* No data locality => not adapted to proximity queries QUASI-
RANDOMLY

PARTITIONS

* Range partitioning L _
* Partitions data into roughly equal ranges
* Partition key is only one dimensional - ——— ——

=» But, our target is multi-dimensional...

NODES

Healpix Based Range Partitioning

* Healpix: Hierarchical Equal Area isoLatitude Pixelization of a sphere [NASA]
* A structure for hierarchical pixelization of the data on the sphere
* Assigns a 1D index to each pixel in a way it keeps data locality
* NSIDE = the amount of subdivision of base pixels

* Use spark range partitioner with Healpix as partition key

Healpix partition
(NSIDE = 2)

\ Healpix partition
(NSIDE = 1)

AstroSPARK Karine Zeitouni

14

Convert to DataFrame
& Add Healpix

Partitioning Algorithm

Shu:ffle

HDFS
blocks

hdfs://path/to/input

AstroSPARK

<

Sort & range partition Add partition
(#partitions) number

Organized
DataFrames
DataFrame partitions
partitions

#partitions = (InputSize/PaftitioriSize)(1+a)

j j Idx n, Range = 50000-80000)|
s s T - i

Idx 0 ,Range = 0-10000
Idx 1,Range = 10001-15000

BoundaryList
i metatdata
hdfs://path/to/output
15

Partitioning Result

Range = 0-5000 =@>1/

N

Range = 5001- ~—
10000 Node 2

~_

Range = 10001-

Partition Visualization with Aladin*

(*) http://aladin.u-strasbg.fr

AstroSPARK Karine Zeitouni 16

Outline

Introduction
AstroSpark Architecture
Data Patitioning Algorithm

.l Cross-Matching

L

Experimental Evaluation

1 Conclusion

AstroSPARK Karine Zeitouni

17

Cross-Matching

* |dentify and correlate objects belonging to different observations
* Given two sets, R and S, of data points

* Find all pairs (r,s) € RxS, such that sphericalDistance(r,s) < €.
R xmatch. S =1V(r.s) e RxS|sphericalDistance(r,s) < & |

® Points of R
Points of S

Cross Matching using Spark SQL

SELECT *
FROM R JOIN S ON (2 * ASIN(SQRT (SIN((SDEC 2-DEC)/2) *
SIN ((SDEC 2-DEC)/2) + COS(SDEC 2) * COS(DEC) *
SIN((SRA 2 - RA)/2) * SIN((SRA 2 - RA)/2))) <= &)

=»Spark: Cartesian product of two input tables
=>Then filters from the Cartesian product based on the distance predicate
* Producing the Cartesian product is costly in Spark

* The execution time of a cross-match between 5 millions of Gaia and all records of Tycho-2
is more than 300 hours (12 days)

AstroSPARK Karine Zeitouni 19

Cross Matching using AstroSPARK

Challenge: Comparing vast amount of
astronomical objects with low latency

» Limit the comparison to the objects
according to their healpix index

<> But objects on the border of different cells
could match.

=> Join should be extended to neighbors !

=» We propose HX-Match - A Healpix based cross(X)-match

AstroSPARK Karine Zeitouni 20

HX-Match - Algorithm

1. Partitioning the two input datasets R and S using healpix and range partitioning

2. Duplicate all objects in S and assign these duplicates the healpix index of
each neighbor cell -> Let’scall it S’

=> comparing candidate objects of S’ with R is reduced to a basic equi-join.
3. Equi-join (R, S’) on Healpix indices

4. Filter joined results on the Harvesine formula

HX-MATCH Functioning

S’ with neighbors

3. Augment S, with
neighbors

How to deal with objects along
the borders?

3. Equi-join with R,
4. Filter joined results on

the Harvesine formula
AstroSPARK Karine Zeitouni 22

Implementing HX-Match using SPARK tools

Mainly 3 ways :
1. Extend the DataFrame API
2. Use spark strategies to extend the spark catalyst optimizer

3. SQL Query rewriting

Solution 1 - Extending DataFrame AP]

e DataFrame is a distributed collection of data organized into named columns.
e DataFrame APl is extended to support HX-MATCH

DF1.HXMatch(DF2, 2/3600)

» This function will match the current dataframe DF1 with another dataframe
DF2 using radius= 2/3600

Solution 2 - Using Spark Strategies

* Extend the query plan optimizer

* Transform a spark logical plan to an optimized physical plan

* AstroSpark converts the spark join logical plan to a list of internal
catalyst operations (SortMergeloinExec, ...) using strategies

SELECT * FROM gaia
JOIN tycho2 ON 1=CONTAINS (
POINT(’ICRS’, gaia.ra, gaia.dec),
CIRCLE(’ICRS’, tycho2.ra, tycho2.dec, 2/3600))

-

N

SQL DataFrame

LogicalPlan

PhysicalPlan

|

|

RDDs

Solution 3 - Query rewriting

* AstroSpark rewrites the ADQL query to an SQL query

* The ADQL query is parsed, and translated into a Spark SQL expression
» Explode is a built)in spark function and Neighbours is a user-defined function

SELECT * FROM gaia JOIN SELECT * FROM gaia JOIN
@ » (SELECT *,explode(Neighbours(ipix)) As ipix_nei FROM tycho?2)

N 1=CONTAINS |
POINT('ICRS’, gaia.ra, gaia.dec),
RCLE(’'ICRS’, tycho2.ra, tycho2.dec, 2/3600))

ON (ipix=ipix_nei) WHERE
(SphericalDistance(gaia.ra,gaia.dec,tycho2.ra,tycho2.dec) <2/3600)

Outline

Introduction
AstroSpark Architecture
Data Patitioning Algorithm
Cross-Matching

] Experimental Evaluation

1 Conclusion

AstroSPARK Karine Zeitouni

27

Experimental Setup

e Environmnent

* 6 nodes / 180 GB spark main memory/ Partition size: 256 MB
* Spark 2.0.1 / Hadoop 2.7.2

* Dataset
 GAIA DR1
* More than 1 billion records, 57 attributes
* Tycho-2
e 2,5 millions records.

» Radius chosen for the cross-match: 2 arc-seconds

Performance of Cross-Matching

HX-Match outperforms SIMBA, a state-of-the-art approach

250

GAIA DR1 <->TYCHO2

Cross-match Radius : 2 arc-second
200

HX-Match is also
6000 X faster than
“plain” Spark SQL

150

100

Execution Time(mn)

50

0 200000000 400000000 600000000 800000000 1E+09 1,2E+09
#Lines GAIA (Milions)

e=@==HX-MATCH ==@==HX-MATCH with Strategy = ==@==SIMBA

AstroSPARK Karine Zeitouni

29

Conclusion and Future Work

Contributions

* Design of AstroSpark, a distributed system based on Spark to process astronomical data.
* Data partitioning with Healpix to speed up query processing

* Implement a cross-matching algorithm based on Spark and Healpix

e Extend the spark 2.0 Catalyst optimizer to implement the query optimizer

Future Work

* Propose other algorithms for NN queries, NN join, histograms, ... with ADQL

* Explore other techniques of optimization
* Cost based optimisation, multi-query (workload) execution, ...

» Do not hesitate to challenge us !

AstroSPARK Karine Zeitouni 30

References

Brahem, M., S.Lopes, LYeh and K.Zeitouni. AstroSpark - Towards a Distributed Data Server for Big
Data in Astronomy. ACM SIGSPATIAL PhD Workshop’16.

Brahem, M., LYeh and K.Zeitouni , HX-MATCH: In-Memory Cross-Matching Algorithm for
Astronomical Big Data, to appear in International Symposium on Spatial and Temporal Databases

(SSTD’17).
Dong, X. & al. Simba: Efficient In-Memory Spatial Analytics. SIGMOD 2016.

Eldawy, A., & Mokbel, M. F. A demonstration of SpatialHadoop: an efficient mapreduce framework
for spatial data. VLDB 2013.

Gorski, K.M., & al. HEALPix: a framework for high-resolution discretization and fast analysis of data
distributed on the sphere. The Astrophysical Journal 622.2 (2005): 759.

Nishimura, S., & al MD-HBase: design and implementation of an elastic data infrastructure for
cloud-scale location services. Distributed and Parallel Databases 31.2 (2013): 289-319.

Yu, J., & al. Geospark: A cluster computing framework for processing large-scale spatial data. In
Proceedings of the 23rd SIGSPATIAL International, page 70. ACM, 2015.

