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Wolf-Rayet galaxies: star-forming galaxies whose spectra show signatures
from WR stars (broad emission feature at ~ 4680 A or WR blue bump)
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Why local metal-poor WR galaxies with nebular Hell

emission ?

v Representative of primordial distant star-forming galaxies that may be

responsible for the Epoch of reionization (e.g., Bouwens+2011; Sun & Furlanetto
2016)

v

v WR population: stronger disagreement between models and data in metal
deficient galaxies (e.g., Crowther & Hadfield 2006; Brinchmann+2008;Leitherer+2014)

v Long GRB: prefer metal-poor, star-forming galaxies with negligible

metallicity gradients (e.g., Fruchter+2006;Modjaz+2008; Christensen+2008; Niino

2011) & WRs are the prime candidates for their progenitors (e.g., Woosley & Bloom 2006;
Hammer+2006;Crowther 2007)

v Critical laboratories to test stellar population synthesis models at sub-SMC
metallicities: constrains on WR star formation and possible progenitor
population for GRBs



Why is the study of nebular Hell line in metal-poor galaxies

relevant ?

v Hell emission (\1640, 4686 A): the existence of sources of hard radiation field (E
> 54ev)

v Hell-emitters are observed to be more frequent among high-z galaxies than for
local objects (e.g. Kehrig+2011; Cassata+2013) and the nebular Hell line is one of

tracers of Poplll-stars (e.g., Schaerer 2003: Johnson+2009)

v Nebular Hell is stronger in low metallicity galaxies (e.g., Guseva+2000; Senchyna
+2017) + empirical constrains on models for metal-poor massive stars are difficult to
obtain (e.g., Herrero+2012; Georgy+2016) = nebular Hell line in metal-poor galaxies is
a useful window into the ionizing spectrum of these stars and a signpost for
upcoming long GRBs (e.g., Szécsi+2015)

v Local Universe: nebular Hell line versus WR stars photoionization but the origin

of this high-ionization emission is still an open issue in many cases (e.g. Kehrig+2011;
2013; Shirazi & Brinchmann 2012; Schaerer 2013)



Integral Field Spectroscopy (IFS) as a suitable tool: spectral and spatial
information at the same time (e.g. Kehrig+2008,2012,2013,2015,2016; Perez-
Montero+2011,2013) > Avoid Aperture Effects & Provide Total Flux

v Lower difficulty when doing the spatial correlation between massive stars and
surrounding nebular properties

v Locate WR stars more precisely and find them where they were not detected
before! (e.g. Kehrig+2008,2013; James+2013)

v Spatially resolved nebular Hell line emission:

Ha map for I1Zw70
(Z~1/7 Zg)

2 A l)

1
ergs cm

WR stars

“
=]
=

=
™
=
&

1hpe

=

Kehrig,Vilchez+2008




Two first-class metal-poor WR galaxies with nebular Hell emission
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The first IFS study of Mrk178: Kehrig et al. (2013)
the closest (D~3.9 Mpc) metal-poor WR HIl galaxy
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Optical spectra: INTEGRAL IFU @ WHT 4.2m

For the first time, we study the WR content in Mrk178 beyond its brightest
star-forming knot uncovering new WR star clusters



WR red bump Kehr’g et al. (2013)

Knot A

Using Large/Small
Magellanic Cloud-
template WR stars, we
empirically estimate the
presence of a minimum
of ~ 20 WR stars within
our FOV
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The strength of the broad WR features and its low metallicity (~ 1/10 Zg)
make Mrk178 an intriguing object!

(e.g., Leitherer+2014)



Lack of connection between nebular Hell emission and WR stars

Mrk178 (Z ~ 10% Zg) and 11Zw70 (Z ~ 15% Zg): Hell emission is extended
and goes much beyond the location of WR stars
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IFS: Spatial separation between WR stars and the Hell-emitting zone
(see also lzotov+2006), and where the non-detection of WR features is
unlikely to be an effect of the weakness of WR bumps (see also Shirazi &
Brinchmann 2012)



The first IFS study of IZw18!  Kehrig, Vilchez et al. (2015,201¢)

The nearby (D ~ 19 Mpc) lowest-metallicity (Z~0.0004) SF galaxy and our best

local analog of faraway starbursts (e.g. Skillman & Kennicutt 1993; Vilchez & Iglesias-
Paramo 1998)

Natural local counterpart of distant Hell-emitters!
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-~ : First IFS study of |Zw18!

NASA, ESA Y. lzotov (MAO, Kyiv, UA) and STScl-PRCO4-
T. Thuan (University of Virginia)

FOV ~ 1.4 kpc x 1.4 kpc
Optical spectra: PMAS IFU @ CAHA 3.5m telescope
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We discovered a large (D ~ 440 pc) nebular Hell4686-emitting region
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NW knot and thereabouts:
v Most of higher-Te[Olll] (> 22000 K) spaxels

v Higher excitation gas and ionization parameter

v Nebular Hell-emitting region
Existence of a harder radiation field

Our IFU data reveal for the first time: total
spatial extent and precise location of the
nebular Hell region, and the corresponding
total Hell-ionizing flux in 1Zw18!




What is the main source powering nebular Hell emission in [Zw18 ?

Integrated “Hell-spectrum”
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= Total Hell-ionizing photon flux

Total L(Hell4686)_,.. = Q(Hell)

obs obs

Conventional Hell-ionizing sources (WRs, shocks, X-ray binaries)
cannot convincingly explain the observed nebular Hell emission

in [Zw18



Peculiar very hot stars in 1Zw18

Observations versus Hell-ionizing fluxes from radiation-driven wind
models for the most massive (300 My), hottest O stars at the metallicity
of IZw18 and below (Kudritzki 2002): the number of such stars needed to

explain Q(Hell),,. implies a cluster mass ~ 10 - 20 x M. of the NW knot
of IZw18

star

Szecsi+2015: models for fast rotating massive single stars which undergo
chemically homogeneous evolution (CHE) at the metallicity of 1IZw18:
Transparent Wind Ultraviolet INtense stars (TVWWUINs)

These models cannot produce the highest values of Hell4686/Hf3



Peculiar very hot stars in 1Zw18

metal-free ionizing stars (Poplll-like stars) ?

Searches for Poplll-hosting galaxies have been carried out using Hell lines
because of the strong UV radiation expected at (nearly) Z=0 (e.g. Schaerer 2008;
Visbal+2015)

Rotation = harder ionizing continuum (e.g., Maeder & Meynet 2012; Szécsi+2015)

Compare the observations with Hell-
ionizing fluxes from models for rotating
Z=0 CHE stars (Yoon, Dierks & Langer 2012):

100 Mg, star models - ~ 13 stars are
needed

The harder spectra of these stellar models
can explain the highest values of
Hell4686/H[

Lebouteiller+2013: metal-free gas pockets could provide the raw material for making
such (nearly) metal-free stars in IZw18 (see also Tornatore+2007;Sarmento+2012)

Senchyna+2017: for 3 Hell-emitting galaxies, stars with metallicity much lower than
that of their Hll regions are required



" Take-Away Points

Metal-poor, high-ionizing WR galaxies nearby. challpnge current,
standard models for metal-poor massive;stars 'i
9

s

IFS studies of meta ‘Boor WR galaxies flow extended insight into
their ‘realistic’ ISM *and~ massive stars > constrain long GRB
progenitors and their hosts, models for metal-poor massive stars and
sources responsible for the Universe reionization
A major scientific objective of most of all future observatories (e.g.,
JWST; GTC-MEGARA; E-ELT Harmoni).



Why is the study of the Hell line relevant ?

v Hell-emitters are observed to be more frequent among SF galaxies at high-z than
for local SF objects (e.g. Kehrig+2011; Cassata+2013;); Poplll-stars (the first metal-free
stars) and nearly metal-free stars 2 extremely hard UV-emitting spectrum

v Significant transition in the ionizing
spectrum of stars with metallicity

Z IMF Q(H) Q(Hel) Q(Hell) 7 40|

10”7 46.65

7 =0
Tumlinson &

Shull 2000

52.81 = Popll stars

Wavelength (A)

Synthetic spectra of Population |I
and Population Il clusters

Schaerer (2003)
Q(X) [log(photon/s/Mg)]



Why is the study of the Hell line relevant ?

v/ High-ionization lines in metal-poor galaxies: window into the ionizing spectrum
of metal-poor hot stars and one of the tracers of Poplll-stars (e.g., Schaerer 2003;
Johnson+2009) = such stars are believed to have contributed to the universe's

relonization

Cosmic Dark Ages
i z > 15-30? .
t < 100-270 Myr o
g Rare sources form ® -
g8
£ o T
g2 :
§ A First stars
| 2~ 15-307)
8  Neutral IGM ‘
=
N

Searching for Poplll galaxies is one of the main science drivers for next-generation
telescopes (e.g. JWST, Johnson 2010; Visbal+2015)

v The gas properties and stars necessary and sufficient to power such high-ionizing
emission remains unclear at high-z; before interpreting high-z Hell-emitters & use
Hell line to infer properties of distant starburst, it is crucial to understand the
formation of Hell line in nearby metal-poor objects
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Hell ionization: WR stars and the effect of binarity evolution on the Hell using
the BPASS code (Eldridge+2008,2009,2011)

2 vyr Shirazy & Brinchmann (2012) 2 Myr Binary model

Binary model

[ 5 Myr
- 4
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Log Hell A\4686/HB
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Predicted peak for Hell/Hp is similar between binary and single-star models, but
binary model predict an elevated Hell/H[3 for a longer period of time




Hell ionization: WR stars = What can one expect ?

* WR stars (late phase in the evolution of massive O-type) are more common at
high metallicity 2 metallicity dependence of winds (e.g. Crowther+2002; Mokiem
+2007; Leitherer+2014)

Subtype distribution of

Small Magellanic Cloud SMC Crowther 2007
(SMC) and Large Magellanic . L~15% 2y 5 L
Cloud (LMC) WR stars 0 0
LMC
* Rotation is expected to Z~35%7Z

increase the WR population
(Meynet & Maeder 2005) but
stellar evolutionary models for
rotating massive stars predict
very few, if any, WRs in low

metallicity environments (e.qg.
Leitherer+2014)

* Hell ionizing photons come mainy from hot WR stars = nebular Hell should be
seen when such hot WRs are present and is expected to be weaker/non-existent at
very low metallicity



Nebular Hell line is observed to be stronger at low metallicities (e.g., Guseva
+2000; Schaerer 2003; Thuan & Izotov 2005; Senchyna+2017)
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Nebular Hell does not appear to be always associated with WRs = WRs

cannot explain the Hell ionization in all cases, particularly at low metallicity
(e.g. Guseva+2001; Shirazi & Brinchmann 2012; Kehrig+2013)

CR7 (the brightest Ly @ emitter at z = 6.6):
WR stars interpretation is strongly

disfavoured. Poplll stars or Black Hole ?
(Sobral+2015; Agarwal+2017)
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Stellar population
models including WRs
do not reproduce the
properties of the
narrow Hell emitters.

Poplll stars (see also
T Grafener & Vink 2015)

s oot

stack of narrow Hell-emitter spectra (Cassata+2013)

arbitrary flux




Hell ionization at low-redshift: The observational reality

The origin of the nebular Hell still remains difficult to understand in many cases

GMOS spectroscopy of Hell nebulae in M33 (Kehrig, Oey, Crowther+2011)

BCLMP651

HBWG73
He |l 4686

2 new Hell nebulae in M33 not associated with any hot massive star




Hell ionization at low-redshift: The observational reality

Guseva et al. (2000)
c)

12 out of 30 Hell-emitting SF galaxies gala(>j<|es W'tg \(jl\i_\gefded and
do not show WR features in their nonadetecte eatures are

long-slit spectra indistinguishable and other
mechanisms for the origin of nebular
Hell need to be invoked

Hell4686/Hp

40% of the Hell-emitting SF galaxies
from SDSS do not show WR signatures

- lack of WR features does not seem to

be a S/N issue
R, Shirazy & Brinchmann (2012)

Fraction showing WR features

12+log(O/H)
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Mrk178: ISM chemical abundances

Spatial correlation between the location of the
WRs and the ISM properties

Distribution of N/O
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D=3.9 Mpc, ~ 0.9"/spaxel, ~ 20 pc/spaxel

Localized N and He enrichment, spatially

correlated with WR Knot C (see also e.g. Esteban &
Vilchez 1992; Lopez-Sanchez+2011; Perez-Montero+2013)

Kehrig et al. (2013)



Mrk178: aperture effects on the detection of WR features

WR galaxies from SDSS:

From our IFU data: 1D spectra by combining fibers within circular apertures

of increasing diameters

SDSS - Mrk178 7.0 <12 + log (O/H) < 8.1
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v Mrk178 gets closer to the bulk
of metal-poor systems as the
aperture size increases. The offset
is caused by aperture effects

v For apertures with D > 10",
we no longer detect the WR

bump

WR galaxy samples based on
single fiber/long-slit spectrum
may be biased in the sense that
WR signatures can escape
detection




Spatially Resolved lonization Structure of the ISM

D=18.2 Mpc, ~ 1"/spaxel ~ 88 pc/spaxel
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diagnostic diagrams on a spaxel-by-spaxel basis and integrated values
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What is the main source powering nebular Hell emission in [Zw18 ?
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(see also Legrand+1997; Izotov+1997; Kehrig

NASA, ESA Y. lzotov (MAO, Kyiv, UA) and STScl-PRC04-35 + 20 1 6)
T. Thuan (University of Virginia)

1) WR stars ? based on the Hell-ionizing flux expected from "1Zw18-like”
WRs (Crowther & Hadfield 2006), = 100 WRs is required to explain the
Q(Hell),ps , but such very large WR population is not compatible with:

obs 7

(> 8 times) Total stellar mass of the NW cluster

WR/QO stars ratio at the metallicity of IZw18 (e.g. Maeder & Meynet 2012)

Stellar evolutionary models for (rotating/non-rotating) massive stars in low-Z
environments (e.g., Leitherer+2014)



2) Shocks ? Spectral features of shock ionization indicate that the Hell
region is unlikely to be produced by shocks

log([O112.6300) log(ISIIA6717+6731)
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3) X-ray binaries ? CLOUDY photoionization model using as input a SED
with the characteristics (L, ,,; column density, slope) reported for the single X-
ray binary in 1Zw18 (Thuan+2004) give L(Hell4686) < 100 L(Hell4686),,

Conventional Hell-ionizing sources (WRs, shocks, X-ray

binaries) are not sufficient to explain the observed Hell
emission in 1Zw18.
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Meynet & Maeder (2005)

=)

o
&

Our Galaxy
M 33

LMC

NGC 6822
SMC

IC 1613

v.mi:300 km s-!

o
—_

(o)
-;
©
"
¢, 0.
Q
L0
£
=
z
(@]
N
o
=

o
(=)
o




Ha and Hell Total Flux & Ionization Budget

NW Knot SE Knot “Plume” “Halo™ Integrated
O 013 013 009 0.00 004
EW@HB) A) 76 150 320 23 350 (K15; K16)
F(Hp) (erg 5! cm2) 395%10°%  323x10°#  316x10°M#  450x10°¥  159x10°13
F(He) (ergs~! em™2) 109x10°1  887x10°¥  870x10°#*  116x10°1®  436x10°13

Q,,(H) =2.410% (phots') (+20% far extended halo; <2.88x) OBSERVED

Flux (Hell 4686) =2.84 +/- 0.18 10" (erg cm™® 1) => L(Hell 45) =1.12 +/- 0.07 10 (erg s™)
Q,ps(Hell)  =1.33 10% (phot s™)

Log F(Hell7»4686)

® EXPECTED
6r e ~3000 O stars in [Zw18 =>
4t L _159 (Guseva et al 2000; Q(H)q;y =10% phot s! Leitherer 1990)
g 2+ L _160 QO(H) ~ 3 1052 (phOt S_l) (Sllghtly larger)
s 0T L 161
3 Ll
°l 162 IF extra He** => = 10% Q,(H) more!
| 163 (10 Min=150 My, see below)
e mil Assuming Q_(H) poplIl models
THEMﬂuizfi:stue::n)mm 801128 (6pp), 2015 March 10 doi:10.1088/2041-8205/8C Mln:lso M® - 27 1050 (phOt S_l)
et Min=100 My, => 1.5 10% (phot s°!)

THE EXTENDED He n A4686-EMITTING REGION IN IZw 18 UNVEILED:
CLUES FOR PECULIAR IONIZING SOURCES

C. KeHRIG!, J. M. ViLcuEz!, E. PEREZ-MONTERO', J. IGLESIAS-PARAMO' 2,

J. BRixcrMany’, D. KunTi®, F. DURReT?, axp E M. Bavo'
! Instituto de Astrofisica de Andalucia (CSIC), Glorieta de la Astronomia /n, E-18008 Granada, Spain
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with parameters from Schaerer (2002). Labels correspond to the first column of




Why are local metal-poor WR galaxies important ?

m “template” systems — understand the evolution and feedback from
massive stars in distant starburst galaxies which cannot be studied to
the same depth

m Disagreement between observations and predictions for the WR
content in metal-poor galaxies (e.g. Brinchmann+2008): more data are
needed to constrain the models

m Usually nebular Hell line is associated with WR stars but the origin of

high-ionization nebular lines, like Hell, is still an open issue (e.g. Guseva
+2001; Kehrig+2011; Shirazi & Brinchmann 2012; Schaerer 2013)



Summary & Concluding Remarks

On 1Zw18: the nearby most metal-poor WR galaxy

m Our IFU data reveal the total spatial extent (D ~ 440 pc) of the nebular Hell4686 emission

m Conventional Hell-ionizing sources (WRs, shocks, X-ray binaries) cannot convincingly explain
the observed nebular Hell4686 emission

m If Hell-ionization is due to stellar sources, these might be peculiar very hot stars

m We invoke the Poplll-like stars scenario in 1Zw18 for the first time - This scenario is getting
popular (see Heap+2015)

On Mrk178: the closest metal-poor WR HIl galaxy:

m By using SMC/LMC template WR stars, we estimate ~ 20 WR stars, already higher than that
found in the literature

B Localized N and He enrichment, spatially correlated with WR stars
B Spatial offset between extended nebular Hell emission and WR stars

B WR galaxy samples constructed on single fibre/long-slit spectrum basis may be biased: WR
features can scape detection depending on the distance of the object and on the aperture size



Summary & Concluding Remarks

m There is still a lack of understanding of narrow Hell emitters even at low redshift

B WR features are not seen whenever Hell is observed

m |IFS - spatial offset between nebular Hell-emitting zone and WR stars can be a possible
explanation for the non-detection of WR features in some galaxy spectra

m Nearby Hell emitters, specially metal-poor ones, are fundamental to better constrain models
for metal-poor massive stars and understand high-z Hell emitters

m |Zw18: our IFU data reveal for the first time its total Hell-ionizing flux and conventional
Hell-ionizing sources (WRs, shocks, X-ray binaries) cannot convincingly explain the
observations

m We invoke the Poplll-like stars scenario in 1Zw18 for the first time (Kehrig et al. 2015)

Some ongoing & future work ...

B Comparison between |Zw18 observations and new BPASS models (collaboration with
J.Eldridge, A.Wofford et al.)

m UV spectra of Hell-emitting SF galaxies: observing time awarded through Cycle 23 COS/
HST(collaboration with J.Brinchmann et al.)



WR stars as GRB progenitors

Prime candidates for precursors of Type
Ib/c SNe & long/soft GRBs. Progenitors:

Associated with young massive stellar
populations,

Compact (excludes RSG progenitors),
Rapidly rotating core.

Primary challenge for single/binary GRB
progenitors is requirement for rapid
rotation at core-collapse (at Z, core
slowed down during RSG/WR phase).



Why is the study of the nebular Hell line relevant in metal-poor galaxies ?

v Hell emission: the existence of sources of hard radiation field (E = 54ev)

v Hell-emitters are observed to be more frequent among high-z galaxies than for
local objects (e.g. Kehrig+2011; Cassata+2013) and the nebular Hell line is one of

the tracers of Poplll-stars

v High-ionization Hell line: one of the tracers of Poplll-stars (the first very hot metal-free stars) (e.g.,
Schaerer 2003; Johnson+2009) = such stars are believed to have contributed to the universe's
reionization

v Metal-poor massive stellar evolution is poorly constrained by observations (e.g. Tramper+2011; Herrero
+2012; Georgy+2016) = Hell line in metal-poor galaxies is a useful window into the ionizing spectrum of

these stars
¢/ This is consistent with the GRB/SN-ratio in the local Universe being significantly smaller
(Podsiadlowski et al. 2004) due to the observed preference for GRBs to occur in low-metallicity
dwarf galaxies (Langer & Norman 2006; Niino 2011). As a consequence, we can consider large
He ll-emission in low-metallicity star-forming dwarf galaxies (Sect. 10.4) as a signpost for
upcoming GRBs in the same objects.

B Usually nebular Hell line is associated with WR stars but the origin of high-ionization nebular lines,
like Hell, is still an open issue (e.g. Guseva+2001; Kehrig+2011; Shirazi & Brinchmann 2012; Schaerer
2013)

¢/ Before interpreting high-z Hell-emitters & use Hell line to infer properties of distant starburst, it is crucial to
understand the formation of Hell line in nearby metal-poor objects Hell line is stronger at low metallicities



