Ram-pressure stripped ionized gas found in Suprime-Cam/Subaru narrow-band imaging

> YAGI, Masafumi (National Astronomical Observatory of Japan)

Ha emitting objects Ha is a recombiation line of ionized hydrogen gas. λ =6562.8 Å (rest;air)

Hα emitting objects are...
HII region (star-forming region)
AGN, planetary nebulae,
shock, turburance, etc.

and sometimes intergalactic ionized gas.

NGC4388 in Virgo Blue:[OIII] Green: V Red: Hα

Hα@659nm (z~0.005)

Yoshida+2002

Active Galaxy NGC 4388

Suprime-Cam (OIII, V, H α)

Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 2002 National Astronomical Observatory of Japan, all rights reserved

April 15, 2002

Extended Ionize Gas

Extended Ionized Gas (EIG) $H\alpha$ emission out of galactic disk.

To keep shining in $H\alpha$, some ionizing source/mechanism is needed . (and last for the age of the EIG).

Meanwhile, if ionization is too strong, the gas will be fully ionized plasma(evapolated), and stop Hα emission.

Elgs from Hot images (I'm sorry if incomplete)

EIG is not always RPS

Hickson Compact
Group 92
(Stephan's quintet)
B,R,NB671
(Hα@z=0.02)

Tidally stripped gas is ionized by shock and young stars. (Though RPS may work as well)

NGC4388 in Virgo [OIII],V,Hα

Active Galaxy NGC 4388

Suprime-Cam (OIII, V, H α)

April 15, 2002

Subaru Telescope, National Astronomical Observatory of Japan

Copyright © 2002 National Astronomical Observatory of Japan, all rights reserved

Yoshida+2002

NGC4388 in Virgo

[OIII],V,Hα

Active Galaxy NGC 4388

Suprime-Cam (OIII, V, H α)

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 2002 National Astronomical Observatory of Japan, all rights reserved April 15, 2002

Yoshida+2002

Our strategy Wide field narrow&broad band (NB&BB) imaging of galaxy clusters to detect EIGs (candiates). - $H\alpha$ emitting gas out of galaxies is less affected by continuum - in cluster of galaxies, many objects exist at the redshift so that $H\alpha$ is at the NB center.

Subaru Telescope & Subaru: 8.2m telescope @Maunakea, Hawaii Suprime-Cam: a wide-field imager. Decommissioned last month (2017 May). Hyper Suprime-Cam succeeds.

EWASS 2017

Images from Subaru Telescope

Suprime-Cam covers fullmoon size

5x2 of 2k x 4k CCDs

27'

Moon image is taken from NAOJ WWW.

... supermoon is larger

Moon image is taken from NAOJ WWW.

Narrow-band imaging

NB – BB shows Hα strong regions.

> Spectrum from SDSS.

Part of the Coma Cluster image (NB671) used in Yagi+2007,2010

NB-BB (left)

3color composite B,R,NB (right)

They were spectroscopically confirmed to have the redshift of the Coma (Yagi+2007,Yoshida+2012, Yoshida+ in prep.)

NB-BB of continuum

In case of an NB filter (NB671; H α @z=0.02), blue continuum makes NB-BB flux negative, while red continuum makes NB-BB positive. \Rightarrow false H α excess at red continuum object.

EG detection

Visual inspection of NB-BB image and 3-color composites, to reject - continuum residual - optical ghosts - debris of moving object - noises, blooming, flat errors, etc. etc.

In Coma, false detection was 0% (0/14) #completeness is unknown...

Elgs from Ha images Using Subaru Suprime-Cam Imaging

EGs from HaadSubaru Selection of the target cluster depends on available narrow-band filters. Area ElGs from arcmin² Subaru Hα z=0.004 NA659 1000 Virgo (1)(+more) z=0.023 NA671 2200 12(+3?) Leo Coma z=0.023 NA671 1600 14(+9?) (+more) A2420 z=0.085 NB711 1000 2 A2597 z=0.085 NB711 1000 4 CL0024 z=0.390 NB912 1000 \bigcirc A851 z=0.405 NB921 1000 9

Number of EIGs per cluster is various, but in most of the clusters, EIGs exist, and rare.

Our strategy

The role of wide-field NB and BB imaging is to DETECT candidates of ElGs. Such candidates are rare; 0~7 in dithered 35'x28' field.

Blind NB&BB survey, and then, targetted spectroscopy.

Two interesting (strange) objects in the Leo(A1367)

Long tail from BIG

Yagi+2017

Orphan clouds

12:00 g 11:00 30 Dec(J2000) +20:10:00 30 00:60 30.0 28.0 26.0 24.0 22.0 11:44:20.0 RA(J2000)

Yaqi+2017

Isolated Hα clouds ~35x10 kpc No apparent parent galaxy; no giant within 80kpc.

Where are they from? What keeps them ionized??

Probable star formation

Magenta color implies H α and young stars = star formation. Need spectroscopic confirmation. Yagi+2017

Spectroscopic follow-up is VERY IMPORTANT

NB vs redshift

Yagi+2017 accurate Hα flux etimation requires spectral information (at least redshift)

Follow-up spectroscopy

- Confirmation of the redshift.
- Velocity gradient (Deceleration)Diagnositic line ratios.

Wide-field IFS is desirable! ... but because of telescope time accessibility, we used MOS (FOCAS/Subaru and LRIS/Keck) for Coma EIGs.

Deceleration

RB199(GMP4060) in Coma

Yoshida+2008 Yagi+2010

Deceleration

10 Coma ElGs distance from the parent galaxy vs. recession velocity

Yoshida+ in prep.

Line ratios

Coma ElGs (Yoshida+2012, Yoshida+ in prep.)

[NII]/Hα vs [OIII]/Hβ

Similar to HII regions rather than AGNs.

Line ratios

Coma ElGs (Yoshida+2012, Yoshida+ in prep.)

[OI]/Hα is sometimes larger than theoretical HII regions' ratio.

⇒shock? but not always

Summary 1/3 Ram pressure stripped (RPS) gas is sometimes ionized and seen clearly in Hα.

 Narrow-band Imaging at the redshifted Hα are useful for searching the intergalactic ionized gas (not always RPS)

Summary 2/3

- Subaru Telescope is a power tool for detecting Hα cloud (extended ionized gas; EIG) candidates.
- Spectroscopic follow-up is necessary in most cases.
 (e.g., for an accurate Hα surface brightness measurement)

Summary 3/3 - Questions still remain about EIGs e.g., - lonizing source - Fate of the stripped gas - Key parameter of the variery among systems and among clusters