Ram Pressure Stripping of the Magellanic System

Gurtina Besla (U. Arizona)

David Setton, Munier Salem

Greg Bryan, Mary Putman, Roeland van der Marel, Nitya Kallivayalil

The Magellanic System

Potential Inflow rate \sim 3.6-6.7 M_{\odot}/yr (Fox+ 2014) [may be more frequent in the PAST]

> Leading Arm Putman+ 2003

Bridge Kerr 1954

> LMC SMC

Magellanic Stream Mathewson + 1974, 1977 Dieter 1965; van Kuilenberg 1972 Wannier & Wrixon 1972

Nidever+ 2010

 $M_{Gas outside} \sim 2 \times 10^9 M_{\odot} (d/55 \text{ kpc})^2 > 2 \times M_{Gas LMC+SMC}$ Fox + 2014

What is the Dominant Formation Mechanism of the Extended HI Structures?

1. MW Tides

Murai & Fugimoto 1980, Lin+1995, Gardner & Noguchi 1996, Yoshizawa & Noguchi 2003, Bekki & Chiba 2005, Connors+ 2005, Ruzicka+2010

2. Ram Pressure Stripping of LMC

Moore & Davis 1994, Heller & Rohlfs 1994, Mastropietro + 2005, 2009, Salem, Besla+2015

3. LMC-SMC Interactions (Bridge)

High Mass LMC: Besla + 2010, 2012, 2013 Low Mass LMC: Diaz & Bekki 2012, Guglielmo+2014

MW Tides? But the LMC Radius > 18.5 kpc

SMC also has an extended stellar component ~11 kpc (Nidever + 2011)

Besla, Martinez-Delgado+2016

Simulation Set Up

The Recent Pericentric Passage of the LMC about the MW is Model Independent

Enzo AMR Simulations

Resolution: 30 pc

No cooling.

Gas initially at 10⁶ K

Salem, Besla +2015

Constraints on CGM density at ~ 48 kpc

IF BETA PROFILE:

$$M_{gas smooth}$$
 (R < 300 kpc) = 2.6 (+/- 1.4) x 10¹⁰ M \odot

(7-24% of Expected Baryons in 1e12 halo)

Similar to that inferred for M31 (Lehner et al. 2015)

Contribution to the Mag. Stream/CGM?

10 KPC

 $\sim 7 \times 10^{6} \mathrm{M}_{\odot}$ ~ 1% of MS

1022

Conclusions

- The LMC's HI disk shows evidence of truncation by ram pressure stripping in the direction of motion (r_{trunc}= 6.2 +/- 0.25 kpc)
- This provides a direct constraint on the gas density of the MW's CGM at ~ 48 kpc

 $n_{\rm MWHalo}(R = 48.2 \pm 2.5 \text{ kpc}) = 1.1^{+.44}_{-.45} \times 10^{-4} \text{ cm}^{-3}$

- LMC will generate a bow shock 30 kpc in radius : increased mixing in CGM and satellites will exist within the shock.
- Ram pressure stripping from the LMC contributes negligibly to the mass content of the HI Stream
- Instead, LMC tides strip material from the SMC: preprocessing in small dwarf group environment may aid in the removal of gas and quenching of small systems.