Physical Properties of Narrow and mini-Broad Absorption Line Systems

<u>Toru Misawa¹</u>, Michael Eracleous², Jane C. Charlton², Naohisa Inada³, and Masamune Oguri⁴

(1: Shinshu University, Japan; 2: Pennsylvania State University, USA;3: Nara National College of Technology, Japan; 4: University of Tokyo, Japan)

OUTLINE

1. Background

The AGN accretion disk wind model Classification of quasar absorption lines intrinsic and intervening NALs

- 2. Physical properties of NALs and mini-BALs
 - 1) Statistical properties of intrinsic NALs
 - 2) Variability trends of intrinsic NALs and mini-BALs
 - 3) Internal structure of the outflow
- 3. Summary

Possible geometry of the AGN outflow

Background

Accretion Disk-Wind Model

Contamination of intrinsic NALs

5/18

Some fraction of NALs are physically associated to background quasars because:

- 1) Number of C IV NALs changes on the properties of background quasars (Richards+ 1999; 2001) → intrinsic NAL contamination as high as 36%
- Number excess of C IV NALs within 10,000 km/s of z_{em} of background quasars (~2200 SDSS quasars; Nestor+ 2008) → intrinsic NAL as high as 50%

Physical Properties of NALs and mini-BALs

How to identify intrinsic absorption lines

7/18

Dilution of absorption troughs by unocculted light from the quasar continuum source makes the optical depth ratio of resonant UV doublets (e.g., C IV, N V) deviate from 2:1, as dictated by atomic physics (e.g., Wampler+ 1995).

Variability in BALs, mini-BAL, and NAL

A significant fraction (70-90%) of BALs and mini-BALs are variable, while only 20% of NALs show weak variability. The variability amplitude becomes larger in longer time intervals.

Possible Origins of Variability

Gas motion across our sightline to the source [Gas motion (GM) scenario]

Change in ionization condition [Variable Ionization State (VIS) scenario]

Changes in the ionization state of the absorber due to a variable ionizing continuum cause variability in absorption strength.

e.g., Hamann+ 2011, Trevese+ 2013

Narrow components in mini-BALs

11/18

Narrow kinematic components are sometimes found near the centers of mini-BALs. Their strengths and profiles (after broader troughs are fitted out) are stable like NALs. Both of them could have a same origin.

- NALs and the narrow cores of mini-BALs arise in high-density clumpy clouds (τ >>1).
- The broader troughs of mini-BALs arise in diffusely distributed gas (τ<1), and it could be a filamentary structure above the main stream of the outflow.

Complex Internal Structure?

The outflow stream may have a complex internal structure that consist of a number of small clumpy clouds ($\leq 10^{-3}$ pc) with very high gas densities ($n_e \geq 10^7$ cm⁻³) (e.g., Hamann+ 2013).

A radiation-MHD simulation (Takeuchi+ 2013).

Multi-sightline observation

Using Subaru and VLT, we performed multi-sightline spectroscopy of a gravitationally lensed quasar SDSS J1029+2623 whose image separation (~22.5") is largest among those discovered so far.

© NASA, ESA, M. Oguri, T. Schrabback

Sightline difference in absorption lines

A clear difference in absorption profile between the images A and B in the shaded area (Misawa+ 2013). Possible scenarios include:

- ... time variability over time delay of images A and B (Δt_{obs} 744d) (e.g., Chartas+ 2007)
- difference in the absorption level along different sightlines (Chelouche 2003; Green 2006)

The difference in absorption profiles has almost unchanged, implying the difference is due to differences along the sightlines (Misawa+ 2014).

 \rightarrow cloud size is <10⁻³ pc, if r~10pc

Possible geometry of the AGN outflow

^{16/18} Properties of BAL, mini-BAL, and intrinsic NAL

		BAL	mini-BAL	intrinsic NAL
FWHM [km/s]		> 2,000	500 - 2,000	< 500
Detection Rate [%]		~20	~5	~50
Variability	Strength	very often	very often	rarely
	Profile	Variable	stable	stable
Origin of variability		GM & VIS	VIS (broad)	-
Transverse cloud size [pc]		< 10 ⁻³ (per cloud) at r ~10pc		
Radial distance [pc]		< 100	< 100	> 100
Location		low latitude (main stream)	intermediate (filament?)	high latitude
Total column density* [cm ⁻²]		10 ²³ - 10 ²⁴	intermediate	< 10 ²²

* from X-ray observations (e.g., Gallagher+ 2002, Giustini+ 2011, Misawa+ 2008)

Possible Geometry of the Outflow

SUMMARY

- BAL, mini-BAL, and intrinsic NAL are complementary to each other for a study of outflow wind because their locations in/around the outflow wind are different.
- Global coverage fractions (i.e., detection rate) of BAL, mini-BAL, and intrinsic NAL are ~20%, ~5%, and ~50%, respectively (i.e., total coverage fraction is ~75%).
- A significant fraction (~70-90%) of BALs and mini-BALs are variable in a few years, while NALs and the narrow components in mini-BALs are rarely variable.
- There are two possible origins of time variability: a) gas motion across our sightline and b) a change in ionization state of the absorber. The latter is more important for mini-BAL and NAL absorbers.
- Outflow wind in a gravitationally lensed quasar SDSS J1029+2623 have an internal structure with a scale of <10⁻³ pc assuming its radial distance is ~10pc.
- Possible Geometry: mini-BALs originate in a filamentary structure rising from the main stream of the outflow (i.e., BAL absorber), while intrinsic NALs arise in a high-density clumpy clouds in the polar direction.