
Script for ALMA data packaging (Cycle 0/1/2)

EU ARC

September 11, 2014

Contents

1 Python modules and methods used 1

2 Running the script 1

3 Arrangement of member ids 4

4 Naming convention 5

5 Copying the data 5

6 Sanity checks 7

7 External ephemeris tables 8

8 Packaging including Pipeline products - the Pipeline stager 8

9 Packager Unit Test 10

1 Python modules and methods used

We decided to minimize the use of functions like os.system or os.popen (i.e.,
we avoided, whenever possible, direct calls to the command line), since either
the input or output of the shell commands may depend on the environment
where the script is being run (e.g., bash vs. tcsh), as well as the underlining
operating system (linux/unix/macOS) and/or its version.

Hence, we have used functions in the os and shutil modules that are
independent of the local shell (e.g., os.walk, shutil.copy, etc.) and work
the same way in all the POSIX systems. This approach makes the script fully
portable (virtually independent of the environment and operating system
where it is being run).

1

2 Running the script

The script can be run either as a standalone script (called from CASA) or as
a module to be imported. If it is run as an independent script, the command
to be executed is (in CASA)

execfile(‘‘QA2 Packaging module.py’’)

and if it is loaded as a module in another script, the import is made by
adding the line

from QA2 Packaging module import *

The function that executes the packaging is called QA Packager, and de-
pends on several parameters. If the script is run in standalone mode, these
configuration parameters are set inside the script, so there is no configura-
tion file nor arguments to be passed through the command line during the
script invocation. If the script is loaded as a module, an example call to the
packaging function would be

QA Packager(origpath=’./my QA2’, readme=’./README.header.txt’,

packpath=’./2011.X.00YYY.Z’, mode=’fake’, style=’cycle2-nopipe’)

In this example call, the script would make a fake copy (i.e., just gen-
erate empty files at the destination folder) to help the user checking the
output before the actual packaging. In addition, any data previously saved
in the destination folder would be removed before running the packaging (i.e.
append=’’; see below).

The arguments of the QA Packager function are:

1. origpath → The location of the QA2 reduction folder.

2. packpath → The path to the destination folder (which should have the
project code as name).

3. readme → The path to an ascii file with the text of the README
header (this file can be named, for instance, README.header.txt).

4. mode → The copying mode (see below).

5. style → The packaging style (see below).

6. append→ (optional, default = empty string) The appending mode (see
below).

The parameter mode can take the following values:

• mode = ’fake’ → This is the default. The script creates empty (i.e.,
dummy) files at the destination folder.

• mode = ’copy’ → The files are copied in the normal way. This mode
needs to be chosen when working across different file systems.

2

• mode = ’hard’ → The script generates hard links in the destination
folder. This way, the file-pointers at both the origin and the destination
folders, refer to the same physical locations (i.e., inodes) in the disk.

• mode = ’move’ → The files are moved from the origin to the destina-
tion (not recommended). Then, symbolic links are created at the origin.
The symbolic links are never made to whole folders, but only to files
(to avoid, for instance, an accidental deletion of whole folders at the
destination path by removing the content of a linked folder).

• mode = ’ticket’ → Similar to ’fake’, but the files to be added to the
JIRA ticket are hard-linked. This way, the packager will generate valid
ticket tar files, but the measurement sets and tables will not be copied.

The parameter style is meant as a one-stop control for special features
of the packaging which may change from Cycle to Cycle. This concerns the
inclusion of MSs and of pipeline products. It can take the following values:

• style = ’’ → This is the default. With this value the parameter is
essentially ignored and parameters like noms control what is happening.

• style = ’cycle0’ or style = ’cycle0-nopipe’→ MSs are included.

• style = ’cycle1’ or style = ’cycle1-nopipe’ → MSs are not in-
cluded.

• style = ’cycle2-nopipe’ → MSs are not included.

• style = ’cycle2-pipe1’ → MSs are not included. Pipeline products
are searched for and included.

In regard to the parameter append, it can take the following values:

• append = ’’ → This is the default. It removes any previous data at
the destination folder before the packaging.

• append = ’group’ → The script appends a new group id to the des-
tination folder (so the other groups, if any, are not removed).

• append = ’member’ → The script appends new member id(s) to the
group with highest id (so the other groups, if any, and the other member
ids, if any, are not removed).

• append = ’product’ → The script appends the data to the already-
existing member of highest id (in the group of highest id). If there were
more than one member ids in the data to be packaged, the data of the
first member id will be appended to the already-existing member id,
and the rest of member ids will be appended in separate ids.

The rest of parameters are described in the following sections.

3

3 Arrangement of member ids

The script finds the folders with data and products by looking for the ex-
istence of an ASDM and/or one or several measurement sets. The search
for ASDMs and MSs is not based on name templates, but on the data con-
tent. For instance, the subfolder ASDMBinary is always found in any ASDM,
as well as the subfolder DATA DESCRIPTION is always found in any MS. The
script also identifies calibration tables by looking for the subfolder named
CAL DESC.

Classifying the data in terms of the content of the folders, instead of
their names, makes the algorithm more robust to changes, for instance, in
the naming convention of calibration tables.

Based on the location of the ASDM products, the script can guess if the
dataset is made of one or several member ids of a group. It also looks for pos-
sible combined products (i.e., it looks for folders where there are measurement
sets, but no ASDM-related stuff).

The data in the QA2 can be arranged in many different ways, but some
minimum consistency should be ensured to allow the script classifying well
the different members ids (provided that this feature is going to be used).
There is no limitation to the number of ASDMs analyzed in each folder, but
the basic assumption made by the script, in any case, is that all the direct
products of each ASDM are located in the same directory.

In Fig. 1, we show the expected data structure if there is only one member
id. The folders represented with diamonds are not mandatory (i.e., the com-
bined products and/or the folders for the different ASDMs could be moved
to the parent directory). The data represented with ovals are not required
(i.e., there is no need to have combined products for groups with more than
one member).

In Fig. 2, we show the expected data structure when there are several
member ids. The plotting convention is the same as in the previous figure.
If there is more than one member id, it is not necessary to reduce the data
for these members in subfolders for different ASDMs. Notice, though, that
if this strategy is followed with all the members in a dataset, there may be
confusion with the cases corresponding to Fig. 1.

Finally, there is also the possibility of analyzing one single folder with
the products of one or several ASDM. In that case, no search for different
member ids is done. The initial folder structure of this simple case is that of
Fig. 3.

A possible strategy is to run the script several times (one per folder) with
append = ’member’ (for instance) or run it a minimum number of times
(i.e., identifying, in one run, all the member ids of each group). In any
case, the parameter append controls if the destination folder is completely
removed each time the script is run or, on the other hand, new member
or group/member subfolders are created (so no data are removed from the
destination folder). This appending feature may be useful if the script is

4

Pa ren t

Member A

Data A1 Data A2 Combined

ASDM A1 MS A1 Products A1 ASDM A2 MS A2 Products A2 MS, products,. . .

Figure 1: Initial folder structure recognized by the script as corresponding
one single member id. Notice that different combinations are possible (since
the folders shown in diamonds can be taken out from the structure). The
name of each folder is not important for the script. Each folder can have
products of several ASDMs.

going to be run as part of a larger batch processing script.

4 Naming convention

The script does not change the name of any file or folder with data or plots.
The only renaming performed in the packaging corresponds to the group
ids and member ids. The script sorts the names of the member folders in
alphanumeric order, and assigns their destination directories with the stan-
dard convention member ouss id plus an integer (if there is more than one
member found).

5 Copying the data

Once the data of the different member ids have been found, the script gen-
erates the final folder structure and begins the data packaging.

• All the calibration tables are copied to the folder named according to
the tablefolder parameter. Different subfolders are used for the different
ASDMs (these subfolders are named as the ASDM, but followed by the

5

Pa ren t

Member A Member B

Data A1 Data B1 Da ta B2 Combined

ASDM A1 MS A1 Products A1 ASDM B1 MS B1 Products B1 ASDM B2 MS B2 Products B2 MS, products,. . .

Figure 2: Initial folder structure recognized by the script as corresponding
to different member ids (each of them with one or more ASDMs). The name
of each folder is not important for the script.

Pa ren t

ASDM MS Products

Figure 3: Initial folder structure for the most simple case

6

extension “.calibration”). If there is a calibration table that does
not match this naming convention (it should never happen, but could
happen for very special calibrations), it will also be saved, but just at
the level of tablefolder.

• All the folders full of png images are assumed to be related to plots
of the content of the calibration tables. Hence, they are copied to the
tableplotsfolder folder on an ASDM/MS basis (to keep consistency
with the folder structure of the tables) in folders named as the ASDM
plus the extension “.calibration.plots”.

• Depending on the content of the lists named rawdatacopy and caldat-

acopy (these are lists with the name extensions of the measurement
sets to be packaged), the script will copy either the raw asdm, the
a-priori-calibrated ms, and/or the fully-calibrated ms to the folders
named according to the parameters rawdatafolder and caldatafolder,
respectively.

• The scripts (i.e., files ending with .py) and the logs (i.e., files ending
with .log or .log.txt) are saved in their corresponding subfolders.
The name of the container folder in each data reduction is appended to
the names of the log files, to ensure that no log file will be over-written.

• Finally, the files and folders whose names are described in the list
QA2 others are assumed to be related to QA2. Hence, these files
and folders (together with the checklist files, the .tbl folders, and
the html.tgz files) are saved directly in the qafolder folder.

• If there were combined products, the product, script, and log folders
are created and filled at the member-id level.

• Finally, the script creates a “ticket tar” file. If mode is ’fake’, the tar
file will be made of empty files, but if it is set to ’ticket’, a valid ticket
tar file will be created (and all files not to be added to the ticket will
be copied in ’fake’ mode).

6 Sanity checks

There are two lists named required folders CAL and required files QA2. These
lists contain the extensions of the calibration tables and QA2-related files (re-
spectively) that should appear in all the datasets. If the script cannot find
any of them, it will raise a warning message (although the packaging will
continue). Notice that these are not lists of all tables and files to be copied,
but lists of the required ones. The script will always copy all the calibration
tables found in the ASDM folder being treated, regardless of their name and
extension.

7

The script also checks, on-the-fly, if there are files (or folders) with equal
names that are going to be copied to the same location. In case there are, it
raises a warning message.

Finally, the script checks if there is at least one script, log, and product
for each ASDM.

7 External ephemeris tables

As long as ASDMs do not yet contain the Ephemeris table, ephemerides need
to be packaged separately with the calibration products since they will have
to be attached to the MSs using the task “fixplanets”. The packager will
pick up any files ending in “.eph” and package them into the “calibrated”
directory.

The following checks are performed:

1. If more than one ephemeris table with the same name is found, it is
verified that the two files are indeed identical. If not, the packaging is
aborted since the ephemerides need to be renamed such that different
files have different names.

2. The string “fixplanets” is searched in the calibration scripts.

If it is found but no ephemeris tables were found, a warning is issued.
It is just a warning since fixplanets can also be used for other purposes
than attaching ephemerides.

If it is not found, but ephemeris tables are found, a different warning is
issued telling the user that potentially fixplanets calls may have been
forgotten or the ephemeris tables are superfluous.

8 Packaging including Pipeline products - the

Pipeline stager

Since August 2014, the Packager module includes a second function which
serves to stage pipeline output for imaging.

If you have run the ALMA Pipeline and produced output which you
want to package for further processing elsewhere, you can use the packager
to create a ”delivery style” package.

Also, if you have received such a ”delivery style” package from elsewhere
and have done the imaging part of the QA2 work and now want to package
everything for final delivery to the PI, the packager enables you to do that
as well.

Both use cases are described below.

Case 1 An SB was processed by the pipeline and is to be packaged for
imaging at the ARCs or elsewhere

8

Then run the packager as follows:

QA_Pipeline_Stager(pipeline_root=’<top dir of pipeline results>’,

staged_root=’<project ID == top dir of output package>’,

mode=’<hard, copy, fake>’,

PIscript="<path to scriptForPI.py>")

Example:

QA_Pipeline_Stager(’2013.100456.S-2014-08-08T123456’, ’2013.100456.S’, mode=’copy’,

Case 2 A package as created in Case 1 above has arrived at the ARC (or a
JAO analyst).

The analyst has run the scriptForPI to create the *.ms.split.cal(s) and
verified that the scriptForPI is working in this case.

The analyst proceeded to perform the imaging in the ”calibrated” di-
rectory which was created by the scriptForPI.

The resulting fits files reside in the ”calibrated” directory and the
scriptForImaging resides there as well or in the ”script” directory.

The result is QA2 PASS and now the whole data is to be packaged for
delivery.

Then run the packager as follows:

QA_Packager(origpath=’<top dir of the analysis dir>’,

packpath=’<project id = top dir of output package>’,

readme=’<path to readme file>’,

mode=’<hard,copy,fake,ticket>’,

gzip_caltables=True,

style=’cycle2-pipe1’,

PIscript="./scriptForPI.py")

Example:

QA_Packager(origpath=’./2013.100456.S-analysis’,

packpath=’./2013.100456.S’,

readme=’myREADME.txt’,

mode=’hard’,

gzip_caltables=True,

style=’cycle2-pipe1’,

PIscript="./scriptForPI.py")

9

9 Packager Unit Test

In the same repository directory where you find the packager module, you
also find a ”unit test” for it. This enables you to confirm that the basic
functionality of the packager is working.

Usage:

tar xvzf QA2_Packaging_module.unit-test.tgz

cd QA2_Packaging_module.unit-test

cp ../QA2_Packaging_module.py .

start casapy and run

execfile(’QA2_Packaging_module.unit-test.py’)

Acknowledgements

Thanks very much to Ivan Marti-Vidal (Onsala) and Anita Richards (Manch-
ester) for producing the first useful version of the script. Thanks to Ivan
Marti-Vidal and Adam Ginsburg (ESO) for continued support.

10

