ZERO DRIFT IN MEAN ANOMALY OF THE SATELLITE OF 1996 FG3 AND ITS IMPLICATION FOR THE BYORP THEORY. P. Scheirich¹, P. Pravec¹, S. Mottola², M. Mommert², K. Hornoch¹, P. Kušnirák¹, J. Pittichová³, S.A. Jacobson⁴, D. Pray⁵, D. Polishook⁶, Yu.N. Krugly⁷, I. Slyusarev⁷, J. Pollock⁸, E. Jehin⁹, J. Manfroid⁹, M. Gillon⁹, A. Galád^{1,10}, J. Licandro¹¹, V. Alí-Lagoa¹¹, J. Brinsfield¹², R.Ya. Inasaridze¹³, I.E. Molotov¹⁴, Astronomical Institute AS CR, Ondřejov, Czech Republic, petr.scheirich@centrum.cz, ²DLR Institute of Planetary Research, Berlin, Germany, ³Institute for Astronomy, University of Hawaii, Honolulu, USA, ⁴Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, USA, ⁵Sugarloaf Mountain Observatory, Massachusetts, USA, ⁶Wise Observatory, Israel and Massachusetts Institute of Technology, Cambridge USA, ⁷Institute of Astronomy of Kharkiv National University, Sumska Str. 35, Kharkiv 61022, Ukraine, ⁸Physics and Astronomy Department, Appalachian State University, Boone, NC 28608, U.S.A., ⁹Institut d'Astrophysique et de Géophysique, Sart-Tilman, B-4000 Liège, Belgium, ¹⁰Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia, ¹¹Instituto de Astrofísica de Canarias, c/vía Láctea s/n, 38200 La Laguna, Tenerife, Spain, ¹²Via Capote Observatory, Thousand Oaks, CA, U.S.A., ¹³Kharadze Abastumani Astrophysical Observatory, Ilia State University, K.Cholokoshvili Av. 3/5, Tbilisi 0162, Georgia, ¹⁴Keldysh Institute of Applied Mathematics, RAS, Miusskaya sq. 4, Moscow 125047, Russia.

Introduction: We present an analysis of photometric observations of binary Near-Earth asteroid (175706) 1996 FG₃, taken from 1996 to 2012. The analysis gave a single solution for a quadratic drift of the mean anomaly of the satellite, $(0.00^{+0.18}_{-0.10})$ deg/yr².

A quadratic drift of mean anomaly of satellites of binary asteroids was predicted by [1],[2] as a result of the binary YORP (BYORP) effect of asymmetric emission of thermal radiation. The mean anomaly of changing orbit expanded to the 2nd degree in time is expressed as

$$M = n(t - t_0) + \Delta M_d (t - t_0)^2,$$

$$\Delta M_d = \frac{1}{2} \dot{n},$$

where n is the mean motion, t_0 is the time when $M_0 = 0$ and t is the current time. Pravec and Scheirich [3] adapted results of [1] and predicted the quadratic drift ΔM_d for several binary Near-Earth asteroids with values ranging from -0.24 to -3.27 deg/yr². A value predicted for 1996 FG₃ was -0.89 deg/yr².

Recently, Jacobson and Scheeres in [4] presented a theory of BYORP where mutual tides between the two components are included for the first time. A counterbalance of the two effects results in a long-term stable solution for synchronous binary asteroids with zero drift in mean anomaly.

Observed Data: The data used in our analysis were obtained during five apparitions: from 1996-04-09 to 1996-04-21, from 1998-12-03 to 1999-01-09, from 2009-04-12 to 2009-04-17, from 2010-12-14 to 2011-02-09, and from 2011-11-23 to 2012-01-24.

The data were reduced using the standard technique described in [5]; a rotational lightcurve produced by the primary was removed in the reduction.

Numerical Model: A numerical model used for deriving basic parameters of sizes and shapes of the two components, as well as of their mutual orbit, was described in [6]. The shapes of the components are represented as ellipsoids, orbiting each other on a Keplerian orbit, except for that we included a quadratic drift in mean anomaly ΔM_d , which is fitted as independent parameter. The key to the ΔM_d determination are times of mutual events (i.e., occultations and eclipses) in the lightcurve.

Results: We found a unique solution with the quadratic drift in mean anomaly ΔM_d of ($0.00^{+0.18}_{-0.10}$) deg/yr² (3-σ error bar). A solution for the pole of the mutual orbit in ecliptic coordinates is shown in Fig. 1.

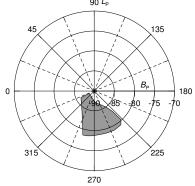


Fig. 1: Admissible $(3-\sigma)$ area of pole of the mutual orbit of 1996 FG₃ in ecliptic coordinates.

References: [1] McMahon J. and Scheeres D. (2010) *Celestial Mechanics and Dynamical Astronomy*, 106, 261–300. [2] McMahon J. and Scheeres D. (2010) *Icarus*, 209, 494–509. [3] Pravec P. and Scheirich P. (2010) 42nd DPS, Oct. 2010, Pasadena, CA. [4] Jacobson S.A. and Scheeres D. (2011) *ApJ Letters*, 736, L19. [5] Pravec P. et al (2006) *Icarus*, 181, 63–93. [6] Scheirich P. and Pravec P. (2009) *Icarus*, 200, 531–547.